Metrics
This documentation is for an unreleased version of Apache Flink. We recommend you use the latest stable version.

Metrics #

PyFlink exposes a metric system that allows gathering and exposing metrics to external systems.

Registering metrics #

You can access the metric system from a Python user-defined function by calling function_context.get_metric_group() in the open method. The get_metric_group() method returns a MetricGroup object on which you can create and register new metrics.

Metric types #

PyFlink supports Counters, Gauges, Distribution and Meters.

Counter #

A Counter is used to count something. The current value can be in- or decremented using inc()/inc(n: int) or dec()/dec(n: int). You can create and register a Counter by calling counter(name: str) on a MetricGroup.

from pyflink.table.udf import ScalarFunction

class MyUDF(ScalarFunction):

    def __init__(self):
        self.counter = None

    def open(self, function_context):
        self.counter = function_context.get_metric_group().counter("my_counter")

    def eval(self, i):
        self.counter.inc(i)
        return i

Gauge #

A Gauge provides a value on demand. You can register a gauge by calling gauge(name: str, obj: Callable[[], int]) on a MetricGroup. The Callable object will be used to report the values. Gauge metrics are restricted to integer-only values.

from pyflink.table.udf import ScalarFunction

class MyUDF(ScalarFunction):

    def __init__(self):
        self.length = 0

    def open(self, function_context):
        function_context.get_metric_group().gauge("my_gauge", lambda : self.length)

    def eval(self, i):
        self.length = i
        return i - 1

Distribution #

A metric that reports information(sum, count, min, max and mean) about the distribution of reported values. The value can be updated using update(n: int). You can register a distribution by calling distribution(name: str) on a MetricGroup. Distribution metrics are restricted to integer-only distributions.

from pyflink.table.udf import ScalarFunction

class MyUDF(ScalarFunction):

    def __init__(self):
        self.distribution = None

    def open(self, function_context):
        self.distribution = function_context.get_metric_group().distribution("my_distribution")

    def eval(self, i):
        self.distribution.update(i)
        return i - 1

Meter #

A Meter measures an average throughput. An occurrence of an event can be registered with the mark_event() method. The occurrence of multiple events at the same time can be registered with mark_event(n: int) method. You can register a meter by calling meter(self, name: str, time_span_in_seconds: int = 60) on a MetricGroup. The default value of time_span_in_seconds is 60.

from pyflink.table.udf import ScalarFunction

class MyUDF(ScalarFunction):

    def __init__(self):
        self.meter = None

    def open(self, function_context):
        super().open(function_context)
        # an average rate of events per second over 120s, default is 60s.
        self.meter = function_context.get_metric_group().meter("my_meter", time_span_in_seconds=120)

    def eval(self, i):
        self.meter.mark_event(i)
        return i - 1

Scope #

You can refer to the Java metric document for more details on Scope definition.

User Scope #

You can define a user scope by calling MetricGroup.add_group(key: str, value: str = None). If value is not None, creates a new key-value MetricGroup pair. The key group is added to this group’s sub-groups, while the value group is added to the key group’s sub-groups. In this case, the value group will be returned, and a user variable will be defined.


function_context
    .get_metric_group()
    .add_group("my_metrics")
    .counter("my_counter")

function_context
    .get_metric_group()
    .add_group("my_metrics_key", "my_metrics_value")
    .counter("my_counter")

System Scope #

You can refer to the Java metric document for more details on System Scope.

List of all Variables #

You can refer to the Java metric document for more details on List of all Variables.

User Variables #

You can define a user variable by calling MetricGroup.addGroup(key: str, value: str = None) and specifying the value parameter.

Important: User variables cannot be used in scope formats.

function_context
    .get_metric_group()
    .add_group("my_metrics_key", "my_metrics_value")
    .counter("my_counter")

You can refer to the Java metric document for more details on the following sections:

Back to top