
Apache Syncope - Reference Guide
Version 4.0.0-SNAPSHOT

Table of Contents
1. Introduction. 2

1.1. Identity Technologies. 2

1.1.1. Identity Stores . 2

1.1.2. Identity Managers . 4

1.1.3. Access Managers . 5

1.1.4. The Complete Picture . 5

2. Architecture . 7

2.1. Keymaster. 7

2.2. Core . 8

2.2.1. REST . 8

2.2.2. Logic . 8

2.2.3. Provisioning . 8

2.2.4. Workflow. 9

2.2.5. Persistence . 10

2.2.6. Security . 10

2.3. Web Access . 10

2.4. Secure Remote Access . 10

2.5. Admin UI. 10

2.6. End-user UI. 11

2.7. Third Party Applications. 11

3. Concepts . 12

3.1. Users, Groups and Any Objects . 12

3.2. Type Management . 13

3.2.1. Schema . 13

Plain . 13

Derived . 14

Virtual . 14

3.2.2. AnyTypeClass . 15

3.2.3. AnyType . 15

3.2.4. RelationshipType . 17

3.2.5. Type Extensions . 18

3.3. External Resources. 19

3.3.1. Connector Bundles . 19

3.3.2. Connector Instance details . 20

3.3.3. External Resource details . 20

3.3.4. Mapping . 21

3.3.5. Linked Accounts . 23

3.4. Realms . 24

3.4.1. Realm Provisioning . 25

3.4.2. LogicActions . 25

3.5. Entitlements. 25

3.6. Privileges . 26

3.7. Roles. 26

3.7.1. Delegated Administration . 26

Group Ownership . 28

3.7.2. Delegation. 28

3.8. Provisioning. 29

3.8.1. Overview. 29

3.8.2. Propagation . 31

PropagationActions . 32

3.8.3. Pull . 33

PullActions . 35

Remediation . 35

3.8.4. Push . 35

PushActions . 36

3.8.5. Password Reset . 36

3.9. Policies . 37

3.9.1. Account . 37

Account Rules. 38

Pass-through Authentication . 39

3.9.2. Password. 39

Password Rules . 39

3.9.3. Access. 40

3.9.4. Attribute Release. 41

3.9.5. Authentication . 41

3.9.6. Propagation . 42

3.9.7. Pull . 42

Pull Correlation Rules . 43

3.9.8. Push . 43

Push Correlation Rules . 43

3.9.9. Ticket Expiration. 43

3.10. Workflow . 43

3.10.1. Flowable User Workflow Adapter . 44

Approval . 45

Request Management. 46

3.11. Notifications . 48

3.11.1. Notification Events . 49

3.11.2. Notification Templates . 50

3.12. Commands . 50

3.13. Tasks . 51

3.13.1. Propagation . 51

3.13.2. Pull . 51

3.13.3. Push . 52

3.13.4. Notification. 53

3.13.5. Macros . 53

3.13.6. Scheduled . 53

3.14. Reports . 54

3.15. Audit . 54

3.15.1. Audit Events . 54

3.15.2. Audit Event Processors . 55

3.16. Routes . 55

3.16.1. Predicates . 56

3.16.2. Filters. 57

3.17. Authentication Modules . 58

3.18. Attribute Repositories . 59

3.19. Client Applications . 59

3.20. Domains . 60

3.21. Implementations . 61

3.22. Extensions . 62

3.22.1. SAML 2.0 Service Provider for UI . 62

3.22.2. OpenID Connect Client for UI. 62

3.22.3. Elasticsearch . 63

3.22.4. OpenSearch . 63

3.22.5. SCIM . 63

4. Usage . 65

4.1. Admin Console . 65

4.1.1. Accessibility . 65

4.1.2. Pages . 67

4.2. Enduser Application . 74

4.2.1. Accessibility . 75

4.2.2. Pages . 77

4.3. Core . 81

4.3.1. REST Authentication and Authorization . 82

JWTSSOProvider . 82

4.3.2. REST Headers. 82

X-Syncope-Token . 83

X-Syncope-Domain . 83

X-Syncope-Key and Location . 83

X-Application-Error-Code and X-Application-Error-Info. 83

X-Syncope-Delegated-By . 84

X-Syncope-Null-Priority-Async . 84

Prefer and Preference-Applied . 84

ETag, If-Match and If-None-Match . 84

X-Syncope-Entitlements. 84

X-Syncope-Delegations. 85

X-Syncope-Privileges . 85

4.3.3. Batch . 85

Batch requests . 85

Batch responses. 86

Asynchronous Batch Processing . 88

4.3.4. Search . 88

Sorting Search Results . 91

4.4. Client Library. 91

4.5. Customization . 95

4.5.1. General considerations . 97

Override behavior . 97

Extending configuration . 97

Deployment directories . 99

4.5.2. Core . 99

4.5.3. Console . 103

4.5.4. Enduser . 104

Form customization . 105

4.5.5. WA . 105

4.5.6. SRA . 106

4.5.7. Extensions . 106

4.6. Actuator Endpoints . 106

4.6.1. Core . 106

4.6.2. WA . 106

4.6.3. SRA . 107

5. Configuration . 108

5.1. Deployment . 108

5.1.1. Standalone . 109

5.1.2. JavaEE Container . 109

5.1.3. Apache Tomcat 10. 110

5.1.4. Payara Server 6 . 110

5.1.5. Wildfly 32 . 112

5.2. DBMS . 114

5.2.1. PostgreSQL . 114

5.2.2. PostgreSQL (JSONB) . 114

5.2.3. MySQL . 115

5.2.4. MySQL (JSON) . 116

5.2.5. MariaDB . 117

5.2.6. Oracle Database . 117

5.2.7. Oracle Database (JSON) . 118

5.2.8. MS SQL Server . 119

5.3. High-Availability. 120

5.4. Domains Management . 120

5.5. ConnId locations . 121

5.6. Install connector bundles. 122

5.6.1. Local sources . 122

Different version of predefined connector bundle . 122

Non-predefined connector bundle . 122

5.6.2. Run-time . 123

5.7. E-mail Configuration . 123

5.8. Control JWT signature. 124

5.8.1. Hash-based Message Authentication Code . 125

5.8.2. RSA Public-Key Cryptography . 125

5.9. Configuration Parameters . 126

6. HOWTO. 129

6.1. Set admin credentials . 129

6.2. Internal storage export - import . 130

6.2.1. Export . 131

6.2.2. Import . 131

6.3. Keystore . 131

6.4. Upgrade from 2.1 . 133

This document is under active development and discussion!

If you find errors or omissions in this document, please don’t hesitate to submit an
issue or open a pull request with a fix. We also encourage you to ask questions and
discuss any aspects of the project on the mailing lists or IRC. New contributors are
always welcome!

Preface
This guide covers Apache Syncope services for:

• identity management, provisioning and compliance;

• access management, single sign-on, authentication and authorization;

• API gateway, secure proxy, service mesh, request routing.

1

https://syncope.apache.org/issue-management.html
https://syncope.apache.org/issue-management.html
https://github.com/apache/syncope/pulls
https://syncope.apache.org/mailing-lists.html

Chapter 1. Introduction
Apache Syncope is an Open Source system for managing digital identities in enterprise
environments, implemented in Java EE technology and released under the Apache 2.0 license.

Often, Identity Management and Access Management are jointly referred, mainly because their two
management worlds likely coexist in the same project or in the same environment.

The two topics are however completely different: each one has its own context, its own rules, its
own best practices.

On the other hand, some products provide unorthodox implementations so it is indeed possible to
do the same thing with both of them.

Identity Management

Tools and practices to keep identity data consistent and synchronized across repositories,
data formats and models.

Access Management

Systems, protocols and technologies supporting user authentication (how Users are let
accessing a given system) and authorization (which capabilities each user owns on a given
system).

From the definitions above, Identity Management and Access Management can be seen as
complementary: very often, the data synchronized by the former are then used by the latter to
provide its features - e.g. authentication and authorization.

1.1. Identity Technologies
Identity and Access Management (IAM) is not implemented by a single technology; it is instead a
composition of heterogeneous technologies - differing by maturity, scope, applicability and feature
coverage - which require some 'glue' to fit together.

As with other application domains, it can be observed that tools that appeared earlier tend to
partially overlap with more recent, targeted products.

1.1.1. Identity Stores

Identity Stores are the places where identity-related information is stored.

An Identity Store can be shared among several systems: as a result, there is a single place where
account data is managed by administrators, and the same password can be used for the same user
for accessing different applications.

Various Identity Store types are available:

• Flat files (XML, CSV, …)

2

• LDAP

• Relational databases (MySQL, Oracle, Microsoft SQL Server, PostgreSQL, …)

• Platform-specific (Microsoft Active Directory, FreeIPA, PowerShell, …)

• Web services (REST, SOAP, …)

• Cloud providers

• …and much more.

Figure 1. Apache Syncope and the external world

ConnId

Apache Syncope relies on ConnId for communication with Identity Stores; ConnId is designed
to separate the implementation of an application from the dependencies of the system that
the application is attempting to connect to.

ConnId is the continuation of The Identity Connectors Framework (Sun ICF), a project that
used to be part of market leader Sun IdM and has since been released by Sun Microsystems as
an Open Source project. This makes the connectors layer particularly reliable because most
connectors have already been implemented in the framework and widely tested.

The new ConnId project, featuring contributors from several companies, provides all that is
required nowadays for a modern Open Source project, including an Apache Maven driven
build, artifacts and mailing lists. Additional connectors – such as for SOAP, CSV, PowerShell
and Active Directory – are also provided.

Aren’t Identity Stores enough?

One might suppose that a single Identity Store can solve all the identity needs
inside an organization, but there are a few drawbacks with this approach:

1. Heterogeneity of systems

2. Lack of a single source of information (HR for corporate id, Groupware for

3

http://connid.tirasa.net

mail address, …)

3. Often applications require a local user database

4. Inconsistent policies across the infrastructure

5. Lack of workflow management

6. Hidden infrastructure management cost, growing with the size of the
organization

1.1.2. Identity Managers

The main role of Identity Managers is to keep Identity Stores synchronized as much as possible.

Some other characteristics and features provided:

• Adapt to Identity Store data and application models

• Do not require changes in Identity Stores or applications

• Build virtual unified view of identity data distributed across several Identity Stores

• Allow to define and enforce security policies

• Permit workflow definition, with transitions subject to approval

• Focused on application back-end

In brief, Identity Managers take heterogeneous Identity Stores (and business requirements) as
input and build up high-level identity data management throughout what is called the Identity
Lifecycle.

Figure 2. Identity Lifecycle

Applications can typically integrate with Identity Managers by:

• exposing some sort of provisioning API (often via REST or SOAP) being invoked
by Identity Managers - also called native integration;

4

• having their identity repository externally managed by Identity Managers -
also called legacy integration.

1.1.3. Access Managers

Access Managers focus on the application front-end, enforcing application access via authentication
(how users are let access a given system) and authorization (which capabilities each user owns on a
given system).

Several practices and standards can be implemented by Access Managers:

• Single Sign-On

• Multi-Factor Authentication

• OAuth

• SAML

• OpenID Connect

Applications can typically integrate with Access Managers by:

• implementing at least one of the most diffuse protocols as OpenID Connect or
SAML - also called native integration;

• being protected by a security-enabled HTTP reverse proxy, which will in turn
interact with Access Managers - also called legacy integration.

1.1.4. The Complete Picture

The picture below shows a typical scenario where an organization’s infrastructure is helped by
identity technologies in providing secure and trusted application access to end-Users, while keeping
different levels of data and processes under control for business owners, help-desk operators and
system administrators.

5

https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://oauth.net/
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://openid.net/connect/

Figure 3. Identity Technologies - The Complete Picture

6

Chapter 2. Architecture
Apache Syncope is made of several components, which are logically summarized in the picture
below.

Figure 4. Architecture

2.1. Keymaster
The Keymaster allows for dynamic service discovery so that other components are able to find
each other.
On startup, all other component instances will register themselves into Keymaster so that their
references can be found later, for intra-component communication.

In addition, the Keymaster is also used as key / value store for configuration parameters and as a

7

directory for defined domains.

Two different implementations are provided, following the actual needs:

1. as an additional set of RESTful services exposed by the Core, for traditional deployments (also
known as Self Keymaster);

2. as a separate container / pod based on Apache Zookeeper, for microservice-oriented
deployments.

2.2. Core
The Core is the component providing IdM services and acting as central repository for other
components' configuration.

The Core is internally further structured into several layers, each one taking care of specific aspects
of the identity management services.

2.2.1. REST

The primary way to consume Core services is the RESTful interface, which enables full access to all
the features provided. This interface enables third-party applications, written in any programming
language, to consume IdM services.

The rich pre-defined set of endpoints can be extended by adding new ones, which might be needed
on a given Apache Syncope deployment to complement the native features with domain-specific
operations.

At a technical level, the RESTful interface is a fully-compliant JAX-RS 2.1 implementation based on
Apache CXF, natively dealing either with JSON, YAML and XML payloads.

More details are available in the dedicated usage section.

2.2.2. Logic

Right below the external interface level, the overall business logic is responsible for orchestrating
the other layers, by implementing the operations that can be triggered via REST services. It is also
responsible for controlling some additional features (notifications, reports and auditing).

2.2.3. Provisioning

The Provisioning layer is involved with managing the internal (via workflow) and external (via
specific connectors) representation of Users, Groups and Any Objects.

One of the most important features provided is the mapping definition: internal data (Users, for
example) representation is correlated with information available on the available Identity Stores.
Such definitions constitute the pillars of inbound (pull) and outbound (propagation / push)
provisioning.

8

https://zookeeper.apache.org/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
http://cxf.apache.org

Figure 5. Internal / External Mapping

The default implementation can be sometimes tailored to meet the requirements of a specific
deployment, as it is the crucial decision point for defining and enforcing the consistency and
transformations between internal and external data.

2.2.4. Workflow

The Workflow layer is responsible for managing the internal lifecycle of Users, Groups and Any
Objects.

Besides the default engine, another engine is available based on Flowable, the reference open
source BPMN 2.0 implementation. It enables advanced features such as approval management and
new statuses definitions; a web-based GUI editor, the Flowable Modeler, is also available.

Figure 6. Default Flowable user workflow

9

https://www.flowable.org/
http://www.bpmn.org/
https://www.flowable.org/docs/userguide/index.html#flowableModelerApp

Besides Flowable, new workflow engines - possibly integrating with third-party tools as Camunda
or jBPM, can be written and plugged into specific deployments.

2.2.5. Persistence

All data (users, groups, attributes, resources, …) is internally managed at a high level using a
standard JPA 2.2 approach based on Apache OpenJPA. The data is persisted into an underlying
database, referred to as Internal Storage. Consistency is ensured via the comprehensive
transaction management provided by the Spring Framework.

Globally, this offers the ability to easily scale up to a million entities and at the same time allows
great portability with no code changes: MySQL, MariaDB, PostgreSQL, Oracle and MS SQL Server
are fully supported deployment options.

Domains allow to manage data belonging to different tenants into separate database instances.

2.2.6. Security

Rather than being a separate layer, Security features are triggered throughout incoming request
processing.

A fine-grained set of entitlements is defined which can be granted to administrators, thus enabling
the implementation of delegated administration scenarios.

2.3. Web Access
The Web Access component is based on Apereo CAS.

In addition to all the configuration options and features from Apereo CAS, the Web Access is
integrated with Keymaster, Core and Admin UI to offer centralized configuration and management.

2.4. Secure Remote Access
The Secure Remote Access component is built on Spring Cloud Gateway.

In addition to all the configuration options and features from Spring Cloud Gateway, the Secure
Remote Access is integrated with Keymaster, Core and Admin UI to offer centralized configuration
and management.

The Secure Remote Access allows to protect legacy applications by integrating with the Web Access
or other third-party Access Managers implementing standard protocols as OpenID Connect or
SAML.

2.5. Admin UI
The Admin UI is the web-based console for configuring and administering running deployments,
with full support for delegated administration.

The communication between Admin UI and Core is exclusively REST-based.

10

https://camunda.org/
http://jbpm.jboss.org/
https://en.wikipedia.org/wiki/Java_Persistence_API
https://openjpa.apache.org
https://docs.spring.io/spring-framework/docs/5.3.x/reference/html/data-access.html#transaction
https://en.wikipedia.org/wiki/Multitenancy
https://apereo.github.io/cas/
https://spring.io/projects/spring-cloud-gateway

More details are available in the dedicated usage section.

2.6. End-user UI
The End-user UI is the web-based application for self-registration, self-service and password reset.

The communication between End-user UI and Core is exclusively REST-based.

More details are available in the dedicated usage section.

2.7. Third Party Applications
Third-party applications are provided full access to IdM services by leveraging the REST interface,
either via the Java Client Library (the basis of Admin UI and End-user UI) or plain HTTP calls.

11

Chapter 3. Concepts

3.1. Users, Groups and Any Objects
Users, Groups and Any Objects are definitely the key entities to manage: as explained above in fact,
the whole identity management concept is literally about managing identity data.

The following identities are supported:

• Users represent the virtual identities build up of account information fragmented across the
associated external resources

• Groups have the dual purpose of representing entities on external resources supporting this
concept (say LDAP or Active Directory) and putting together Users or Any Objects for
implementing group-based provisioning, e.g. to dynamically associate Users or Any Objects to
external resources

• Any Objects actually cover very different entities that can be modeled: printers, services,
sensors, …

For each of the identities above, Apache Syncope is capable of maintaining:

1. name (username, for Users) - string value uniquely identifying a specific user, group or any object
instance;

2. password (Users only) - hashed or encrypted value, depending on the selected
password.cipher.algorithm - see below for details - which can be used for authentication;

3. set of attributes, with each attribute being a (key,values) pair where

◦ key is a string label (e.g. surname);

◦ values is a (possibly singleton) collection of data (e.g. [Doe] but also
[john.doe@syncope.apache.org, jdoe@gmail.com]) ; the type of values that can be assigned to
each attribute is defined via the schema matching the key value (e.g. plain, derived and
virtual);

4. associations with external resources, for provisioning.

Which schemas can be populated for a given user / group / any object?

Each user / group / any object will be able to hold values for all schemas:

1. defined in the Any Type classes associated to their Any Type;

2. defined in the Any Type classes configured as auxiliary for the specific
instance.

Moreover, Users and Any Objects can be part of Groups, or associated to other any objects.

Memberships and Relationships

When an user or an any object is assigned to a group, a membership is defined;
the (static) members of a group benefit from type extensions.

12

When an user or an any object is associated to another any object, a relationship
is defined, of one of available relationship types.

Static and Dynamic Memberships

Users and Any Objects are statically assigned to Groups when memberships are
explicitly set.

With group definition, however, a condition can be expressed so that all matching
Users and Any Objects are dynamic members of the group.
Dynamic memberships have some limitations: for example, type extensions do not
apply; group-based provisioning is still effective.

Security Questions

The password reset process can be strengthened by requesting users to provide
their configured answer to a given security question, chosen among the ones
defined.

3.2. Type Management
In order to manage which attributes can be owned by Users, Groups and any object, and which
values can be provided, Apache Syncope defines a simple yet powerful type management system,
vaguely inspired by the LDAP/X.500 information model.

3.2.1. Schema

A schema instance describes the values that attributes with that schema will hold; it can be defined
plain, derived or virtual.

It is possible to define i18n labels for each schema, with purpose of improving presentation with
Admin and End-user UIs.

Plain

Values for attributes with such schema types are provided during user, group or any object create /
update.

When defining a plain schema, the following information must be provided:

• Type

◦ String

◦ Long - allows to specify a conversion pattern to / from string, according to DecimalFormat

◦ Double - allows to specify a conversion pattern to / from string, according to DecimalFormat

◦ Boolean

◦ Date - allows to specify a conversion pattern to / from string, according to DateFormat

◦ Enum

13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormat.html

▪ enumeration values (mandatory)

▪ enumeration labels (optional, values will be used alternatively)

◦ Encrypted

▪ secret key (stored or referenced as Spring property)

▪ cipher algorithm

▪ whether transparent encryption is to be enabled, e.g. attribute values are stored as
encrypted but available as cleartext on-demand (requires AES ciphering)

◦ Binary - it is required to provide the declared mime type

• Validator class - (optional) Java class validating the value(s) provided for attributes, see
EmailAddressValidator for reference

• Mandatory condition - JEXL expression indicating whether values for this schema must be
necessarily provided or not; compared to simple boolean value, such condition allows to
express complex statements like 'be mandatory only if this other attribute value is above 14',
and so on

• Unique constraint - make sure that no duplicate value(s) for this schema are found

• Multivalue flag - whether single or multiple values are supported

• Read-only flag - whether value(s) for this schema are modifiable only via internal code (say
workflow tasks) or can be instead provided during ordinary provisioning

Derived

Sometimes it is useful to obtain values as arbitrary combinations of other attributes' values: for
example, with firstname and surname plain schemas, it is natural to think that fullname could be
somehow defined as the concatenation of firstname 's and surname 's values, separated by a blank
space.

Derived schemas are always read-only and require a JEXL expression to be specified that
references plain schema types.
For the sample above, it would be

firstname + ' ' + surname

With derived attributes, values are not stored into the internal storage but calculated on request, by
evaluating the related JEXL expression

Virtual

Virtual attributes are somehow linked from Identity Stores rather than stored internally.

The typical use case is when attribute values can change in the Identity Store without notice, and it
is required to always have access to the most recent values that are available.

It can also be said that virtual schemas are for attributes whose ownership is not that of Syncope
but of an Identity Store; the external resources for such Identity Stores are said to be the linking

14

https://docs.spring.io/spring-framework/docs/5.3.x/reference/html/core.html#beans-property-source-abstraction
https://github.com/apache/syncope/blob/master/core/persistence-common/src/main/java/org/apache/syncope/core/persistence/common/attrvalue/EmailAddressValidator.java
http://commons.apache.org/proper/commons-jexl/
http://commons.apache.org/proper/commons-jexl/

resources.

As best practice, only attributes for which Apache Syncope retains ownership
should be modeled as plain attributes; attributes for which Apache Syncope does
not retain ownership should be modeled as virtual instead.

When defining a virtual schema, the following information must be provided:

• External resource - linking resource

• External attribute - attribute to be linked on the external resource

• Any Type - reference any type on the external resource

• Read-only flag - whether the external attribute value(s) for this schema can only be read, or
whether they can be written to as well

3.2.2. AnyTypeClass

Any type classes are aggregations of plain, derived and virtual schemas, provided with unique
identifiers.

Classes can be assigned to any types and are also available as auxiliary (hence to be specified on a
given user / group / any object instance) and for type extensions.

3.2.3. AnyType

Any types represent the type of identities that Apache Syncope is able to manage; besides the
predefined USER and GROUP, more types can be created to model workstations, printers, folders,
sensors, services, …

For all Any Types that are defined, a set of classes can be selected so that instances of a given Any
Type will be enabled to populate attributes for schemas in those classes.

Example 1. Any types and attributes allowed for Users, Groups and Any Objects

Assuming that the following schemas are available:

1. plain: firstname, surname, email

2. derived: fullname

3. virtual: enrollment

and that the following Any Type classes are defined:

1. minimal - containing firstname, surname and fullname

2. member - containing email and enrollment

and that the USER Any Type has only minimal assigned, then the following Users are valid
(details are simplified to increase readability):

15

{
 "key": "74cd8ece-715a-44a4-a736-e17b46c4e7e6",
 "type": "USER",
 "realm": "/",
 "username": "verdi",
 "plainAttrs": [
 {
 "schema": "surname",
 "values": [
 "Verdi"
]
 },
 {
 "schema": "firstname",
 "values": [
 "Giuseppe"
]
 }
],
 "derAttrs": [
 {
 "schema": "fullname",
 "values": [
 "Giuseppe Verdi"
]
 }
]
}

{
 "key": "1417acbe-cbf6-4277-9372-e75e04f97000",
 "type": "USER",
 "realm": "/",
 "username": "rossini",
 "auxClasses": ["member"],
 "plainAttrs": [
 {
 "schema": "surname",
 "values": [
 "Rossini"
]
 },
 {
 "schema": "firstname",
 "values": [
 "Gioacchino"
]
 },
 {
 "schema": "email",

16

 "values": [
 "gioacchino.rossini@syncope.apache.org"
]
 }
],
 "derAttrs": [
 {
 "schema": "fullname",
 "values": [
 "Gioacchino Rossini"
]
 }
],
 "virAttrs": [
 {
 "schema": "enrollment",
 "values": [
 "154322"
]
 }
]
}

3.2.4. RelationshipType

Relationships allow the creation of a link between a user and an any object, or between two Any
Objects; relationship types define the available link types.

Example 2. Relationship between Any Objects (printers)

The following any object of type PRINTER contains a relationship of type neighbourhood with
another PRINTER (details are simplified to increase readability):

{
 "key": "fc6dbc3a-6c07-4965-8781-921e7401a4a5",
 "type": "PRINTER",
 "realm": "/",
 "name": "HP LJ 1300n",
 "auxClasses": [],
 "plainAttrs": [
 {
 "schema": "model",
 "values": [
 "Canon MFC8030"
]
 },
 {
 "schema": "location",
 "values": [

17

 "1st floor"
]
 }
],
 "relationships": [
 {
 "type": "neighbourhood",
 "rightType": "PRINTER",
 "rightKey": "8559d14d-58c2-46eb-a2d4-a7d35161e8f8"
 }
]
}

3.2.5. Type Extensions

When a user (or an any object) is part of a group, a membership is defined.

It is sometimes useful to define attributes which are bound to a particular membership: if, for
example, the University A and University B Groups are available, a student might have different e-
mail addresses for each university. How can this be modeled?

Type extensions define a set of classes associated to a group, that can be automatically assigned to a
given user (or any object) when becoming a member of such group.

Example 3. Membership with type extension

With reference to the sample above (details are simplified to increase readability):

{
 "key": "c9b2dec2-00a7-4855-97c0-d854842b4b24",
 "type": "USER",
 "realm": "/",
 "username": "bellini",
 "memberships": [
 {
 "type": "Membership",
 "rightType": "GROUP",
 "rightKey": "bf825fe1-7320-4a54-bd64-143b5c18ab97",
 "groupName": "University A",
 "plainAttrs": [
 {
 "schema": "email",
 "values": [
 "bellini@university_a.net"
]
 }
]
 },
 {

18

 "type": "Membership",
 "rightType": "GROUP",
 "rightKey": "bf825fe1-7320-4a54-bd64-143b5c18ab96",
 "groupName": "University B",
 "plainAttrs": [
 {
 "schema": "email",
 "values": [
 "bellini@university_b.net"
]
 }
]
 }
]
}

3.3. External Resources

Connector Bundles

The components able to connect to Identity Stores; not specifically bound to Apache
Syncope, as they are part of the ConnId project.

Connector Instances

Instances of connector bundles, obtained by assigning values to the defined configuration
properties. For instance, there is only a single DatabaseTable (the bundle) that can be
instantiated several times, for example if there is a need to connect to different databases.

External Resources

Meant to encapsulate all information about how Apache Syncope will use connector
instances for provisioning. For each entity supported by the related connector bundle
(user, group, printer, services, …), mapping information can be specified.

3.3.1. Connector Bundles

Several Connector Bundles come included with Apache Syncope:

• Active Directory

• Azure

• CSV Directory

• Database

• Google Apps

• LDAP

• Scripted REST

19

http://connid.tirasa.net
https://connid.atlassian.net/wiki/pages/viewpage.action?pageId=360482
https://connid.atlassian.net/wiki/display/BASE/Azure
https://connid.atlassian.net/wiki/display/BASE/CSV+Directory
https://connid.atlassian.net/wiki/display/BASE/Database
https://connid.atlassian.net/wiki/display/BASE/Google+Apps
https://connid.atlassian.net/wiki/display/BASE/LDAP
https://connid.atlassian.net/wiki/display/BASE/REST

• ServiceNow

• SCIM

• SOAP

More Connector Bundles can be installed, if needed.

3.3.2. Connector Instance details

When defining a connector instance, the following information must be provided:

• administration realm - the Realm under which administrators need to own entitlements in
order to be allowed to manage this connector and all related external resources

• connector bundle - one of the several already available, or some to be made from scratch, in
order to fulfill specific requirements

• pooling information

• configuration - depending on the selected bundle, these are properties with configuration
values: for example, with LDAP this means host, port, bind DN, object classes while with DBMS
it would be JDBC URL, table name, etc.

• capabilities - define what operations are allowed on this connector: during provisioning, if a
certain operation is invoked but the corresponding capability is not set on the related connector
instance, no actual action is performed on the underlying connector; the capabilities are:

◦ AUTHENTICATE - consent to pass-through authentication

◦ CREATE - create objects on the underlying connector

◦ UPDATE - update objects on the underlying connector

◦ DELETE - delete objects on the underlying connector

◦ SEARCH - search / read objects from the underlying connector; used during pull with FULL
RECONCILIATION or FILTERED RECONCILIATION mode

◦ SYNC - synchronize objects from the underlying connector; used during pull with INCREMENTAL
mode

Configuration and capability override

Capabilities and individual configuration properties can be set for override: in this
case, all the external resources using the given connector instance will have the
chance to override some configuration values, or the capabilities set.

This can be useful when the same connector instance is shared among different
resources, with little difference in the required configuration or capabilities.

3.3.3. External Resource details

Given a selected connector instance, the following information is required to define an external
resource:

• priority - integer value, in use by the default propagation task executor

20

https://connid.atlassian.net/wiki/display/BASE/ServiceNow
https://connid.atlassian.net/wiki/display/BASE/SCIM
https://connid.atlassian.net/wiki/display/BASE/SOAP
https://github.com/Tirasa/ConnId/blob/master/README.md#available-connectors
https://connid.atlassian.net/wiki/display/BASE/Create+new+connector
https://connid.atlassian.net/wiki/display/BASE/LDAP#LDAP-Configuration
https://connid.atlassian.net/wiki/display/BASE/Database+Table#DatabaseTable-ConfigurationProperties

• propagation actions - which actions shall be executed during propagation

• trace levels - control how much tracing (including logs and execution details) shall be carried
over during propagation, pull and push

• configuration - see above

• capabilities - see above

• account policy - which account policy to enforce on Users, Groups and Any Objects assigned to
this external resource

• password policy - which password policy to enforce on Users, Groups and Any Objects assigned
to this external resource

• pull policy - which pull policy to apply during pull on this external resource

• push policy - which push policy to apply during push on this external resource

3.3.4. Mapping

The mapping between internal and external data is of crucial importance when configuring an
external resource. Such information, in fact, plays a key role for provisioning.

Figure 7. Sample mapping

For each of the any types supported by the underlying connector, a different mapping is provided.

A mapping is essentially a collection of mapping items describing the correspondence between an
user / group / any object attribute and its counterpart on the Identity Store represented by the
current external resource. Each item specifies:

• internal attribute - the schema acting as the source or destination of provisioning operations; it
must be specified by an expression matching one of the following models:

◦ schema - resolves to the attribute for the given schema, owned by the mapped entity (user,
group, any object)

◦ groups[groupName].schema - resolves to the attribute for the given schema, owned by the group
with name groupName, if a membership for the mapped entity exists

◦ users[userName].schema - resolves to the attribute for the given schema, owned by the user

21

with name userName, if a relationship with the mapped entity exists

◦ anyObjects[anyObjectName].schema - resolves to the attribute for the given schema, owned by
the any object with name anyObjectName, if a relationship with the mapped entity exists

◦ relationships[relationshipType][relationshipAnyType].schema - resolves to the attribute for
the given schema, owned by the any object of type relationshipAnyType, if a relationship of
type relationshipType with the mapped entity exists

◦ memberships[groupName].schema - resolves to the attribute for the given schema, owned by the
membership for group groupName of the mapped entity (user, any object), if such a
membership exists

◦ privileges[applicationKey] - resolves to the list of privileges related to the given application,
owned by the mapped entity (which can only be user, in this case)

• external attribute - the name of the attribute on the Identity Store

• transformers - JEXL expression or Java class implementing ItemTransformer ; the purpose is to
transform values before they are sent to or received from the underlying connector

• mandatory condition - JEXL expression indicating whether values for this mapping item must
be necessarily available or not; compared to a simple boolean value, such condition allows
complex statements to be expressed such as 'be mandatory only if this other attribute value is
above 14', and so on

• remote key flag - should this item be considered as the key value on the Identity Store, if no pull
or push correlation rules are applicable?

• password flag (Users only) - should this item be treated as the password value?

• purpose - should this item be considered for propagation / push, pull, both or none?

Besides the items documented above, some more data needs to be specified for a complete
mapping:

• which object class shall be used during communication with the Identity Store; predefined are
__ACCOUNT__ for Users and __GROUP__ for Groups

• whether matches between user / group / any object’s attribute values and their counterparts on
the Identity Store should be performed in a case-sensitive fashion or not

• which schema shall be used to hold values for identifiers generated upon create by the Identity
Store - required by some cloud providers not accepting provided values as unique references

• the model for generating the DN (distinguished name) values - only required by some connector
bundles as LDAP and Active Directory

Example 4. Mapping items

The following mapping item binds the mandatory internal name schema with the external
attribute cn for both propagation / push and pull.

{
 "key": "a2bf43c8-74cb-4250-92cf-fb8889409ac1",
 "intAttrName": "name",

22

http://commons.apache.org/proper/commons-jexl/
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/data/ItemTransformer.java
http://commons.apache.org/proper/commons-jexl/
http://connid.tirasa.net/apidocs/1.5/org/identityconnectors/framework/common/objects/ObjectClass.html
https://connid.atlassian.net/wiki/display/BASE/LDAP
https://connid.atlassian.net/wiki/pages/viewpage.action?pageId=360482

 "extAttrName": "cn",
 "connObjectKey": true,
 "password": false,
 "mandatoryCondition": "true",
 "purpose": "BOTH"
}

The following mapping item binds the optional internal aLong schema for the membership of
the additional group with the external attribute age for propagation / push only; in addition, it
specifies a JEXL expression which appends .0 to the selected aLong value before sending it out
to the underlying connector.

{
 "key": "9dde8bd5-f158-499e-9d81-3d7fcf9ea1e8",
 "intAttrName": "memberships[additional].aLong",
 "extAttrName": "age",
 "connObjectKey": false,
 "password": false,
 "mandatoryCondition": "false",
 "purpose": "PROPAGATION",
 "propagationJEXLTransformer": "value + '.0'"
}

Object link and Realms hierarchy

When Object link is applicable - typically with LDAP or Active Directory, as said -
the need may arise to map the Realms hierarchy into nested structures, as
Organizational Units.

In such cases, the following JEXL expressions can be set for Object link (assuming
o=isp is the root suffix), for example, which leverage the syncope:fullPath2Dn()
custom JEXL function:

• Realms: syncope:fullPath2Dn(fullPath, 'ou') + ',o=isp'

• Users: 'uid=' + name + syncope:fullPath2Dn(realm, 'ou', ',') + ',o=isp'

• Groups: 'cn=' + name + syncope:fullPath2Dn(realm, 'ou', ',') + ',o=isp'

3.3.5. Linked Accounts

Sometimes the information provided by the mapping is not enough to define a one-to-one
correspondence between Users / Groups / Any Objects and objects on External Resources.

There can be many reasons for this situation, including existence of so-called service accounts
(typical with LDAP or Active Directory), or simply the uncomfortable reality that system integrators
keep encountering when legacy systems are to be enrolled into a brand new IAM system.

Users can have, on a given External Resource with USER mapping defined:

23

https://en.wikipedia.org/wiki/Organizational_unit_(computing)

1. zero or one mapped account
if the External Resource is assigned either directly or via Group membership.

2. zero or more linked accounts
as internal representation of objects on the External Resource, defined in terms of username,
password and / or plain attribute values override, with reference to the owning User.

Linked Accounts are propagated alongside with owning User - following the existing push
correation rule if available - and pulled according to the given pull correation rule, if present.

Figure 8. Linked Accounts

3.4. Realms
Realms define a hierarchical security domain tree, primarily meant for containing Users, Groups
and Any Objects.

Each realm:

1. has a unique name and a parent realm - except for the pre-defined root realm, which is named
/;

2. is either a leaf or root of a sub-tree of realms;

3. is uniquely identified by the path from the root realm, e.g. /a/b/c identifies the sub-realm c in
the sub-tree rooted at b, having in turn a as parent realm, directly under the root realm;

4. optionally refers to account and password policies: such policies are enforced on all Users,
Groups and Any Objects in the given realm and sub-realms, unless some sub-realms define their
own policies.

If Users, Groups and Any Objects are members of a realm then they are also members of the parent
realm: as a result, the root realm contains everything, and other realms can be seen as containers
that split up the total number of entities into smaller pools.

This partition allows fine-grained control over policy enforcement and, alongside with entitlements
and roles, helps to implement delegated administration.

24

Dynamic Realms

Realms provide a means to model static containment hierarchies.
This might not be the ideal fit for situations where the set of Users, Groups and Any Objects to
administer cannot be statically defined by containment.

Dynamic Realms can be used to identify Users, Groups and Any Objects according to some
attributes' value, resource assignment, group membership or any other condition available,
with purpose of granting delegated administration rights.

Logic Templates

As with pull it is also possible to add templates to a realm.

The values specified in the template are applied to entities belonging to that realm,
hence this can be used as a mechanism for setting default values for attributes or
external resources on entities.

Logic Templates apply to all operations passing through the logic layer, e.g.
triggered by REST requests.

3.4.1. Realm Provisioning

Provisioning can be enabled for realms: mapping information can be provided so that realms are
considered during propagation, pull and push execution.

A typical use case for realm provisioning is to model an organization-like structure on Identity
Stores, as with LDAP and Active Directory.

3.4.2. LogicActions

When Users, Groups or Any Objects get created, updated or deleted in a realm, custom logic can be
invoked by associating the given Realm with one or more implementations of the LogicActions
interface.

LogicActions apply to all operations passing through the logic layer, e.g. triggered
by REST requests.

3.5. Entitlements
Entitlements are basically strings describing the right to perform an operation on Syncope.

The components in the logic layer are annotated with Spring Security to implement declarative
security; in the following code snippet taken from RealmLogic , the hasRole expression is used
together with one of the standard entitlements to restrict access only to Users owning the
REALM_SEARCH entitlement.

25

https://github.com/apache/syncope/blob/master/core/idrepo/logic/src/main/java/org/apache/syncope/core/logic/api/LogicActions.java
https://spring.io/projects/spring-security
https://github.com/apache/syncope/blob/master/core/idrepo/logic/src/main/java/org/apache/syncope/core/logic/RealmLogic.java
https://docs.spring.io/spring-security/site/docs/5.5.x/reference/html5/#el-common-built-in
https://docs.spring.io/spring-security/site/docs/5.5.x/reference/html5/#el-common-built-in

@PreAuthorize("hasRole('" + IdRepoEntitlement.REALM_SEARCH + "')")
public List<RealmTO> list(final String fullPath) {

Entitlements are granted via roles to Users, scoped under certain realms, thus allowing delegated
administration.

The set of available entitlements is statically defined - even though extensions
have the ability to enlarge the initial list : this is because entitlements are the
pillars of the internal security model and are not meant for external usage.

If you need to model the rights that Users own on external applications, look at
privileges, instead.

3.6. Privileges
Privileges model the rights that Users own on external applications.

Privileges are granted via roles to Users.

The typical use case for privileges is to use Syncope as registry for available
applications and privileges that users can own on those; once done this, external
tools can query Syncope about the privileges owned by given users.

3.7. Roles
Roles map a set of entitlements to a set of realms and / or dynamic realms.

In addition, Roles can be used to assign privileges to Users.

Static and Dynamic Memberships

Users are statically assigned to roles when assignments are explicitly set.

However, a condition can be expressed in the role definition so that all matching
Users are dynamic members of the role.

3.7.1. Delegated Administration

The idea is that any user U assigned to a role R, which provides entitlements E1…En for realms Re1…
Rem, can exercise Ei on entities (Users, Groups, Any Objects of given types - depending on Ei - or
Connector Instances and External Resources) under any Rej or related sub-realms.

Moreover, any user U assigned to a role R, which provides entitlements E1…En for dynamic realms
DR1..DRn, can exercise Ei on entities (Users, Groups, Any Objects of given types, depending on Ei)
matching the conditions defined for any DRk.

 Dynamic Realms limitations

26

https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/types/IdRepoEntitlement.java
https://github.com/apache/syncope/blob/master/ext/flowable/common-lib/src/main/java/org/apache/syncope/common/lib/types/FlowableEntitlement.java

Users to whom administration rights were granted via Dynamic Realms can only
update Users, Groups and Any Objects, not create nor delete.
Moreover, the only accepted changes on a given entity are the ones that do not
change any Dynamic Realm’s matching condition for such entity.

Example 5. Authorization

Let’s suppose that we want to implement the following scenario:

Administrator A can create Users under realm R5 but not under realm R7, administrator
B can update users under realm R6 and R8, administrator C can update Groups under
realm R8.

As by default, Apache Syncope will have defined the following entitlements, among others:

• USER_CREATE

• USER_UPDATE

• GROUP_UPDATE

Hence, here is how entitlements should be assigned (via roles) to administrators in order to
implement the scenario above:

• Administrator A: USER_CREATE on R5

• Administrator B: USER_UPDATE on R6 and R8

• Administrator C: GROUP_UPDATE on R8

Delegated Administration via Admin Console

When administering via REST, the entitlements to be granted to delegated
administrators are straightforward: USER_CREATE for certain Realms will allow to
create users under such Realms.

When using the Admin Console, instead, more entitlements are generally required:
this because the underlying implementation takes care of simplifying the UX as
much as possible.
For example, the following entitlements are normally required to be granted for
user administration, besides the actual USER_CREATE, USER_UPDATE and USER_DELETE:

1. USER_SEARCH

2. ANYTYPECLASS_READ

3. ANYTYPE_LIST

4. ANYTYPECLASS_LIST

5. RELATIONSHIPTYPE_LIST

6. USER_READ

27

7. ANYTYPE_READ

8. REALM_SEARCH

9. GROUP_SEARCH

Group Ownership

Groups can designate a User or another Group as owner.

The practical consequence of this setting is that Users owning a Group (either because they are
directly set as owners or members of the owning Group) is that they are entitled to

• perform all operations (create, update, delete, …) on the owned Group

• perform all operations (create, update, delete, …) on all User and Any Object members of the
owner Group, with exception of removing members from the Group itself

regardless of the Realm.

The actual Entitlements are assigned through the predefined GROUP_OWNER Role:

1. USER_SEARCH

2. USER_READ

3. USER_CREATE

4. USER_UPDATE

5. USER_DELETE

6. ANYTYPECLASS_READ

7. ANYTYPE_LIST

8. ANYTYPECLASS_LIST

9. RELATIONSHIPTYPE_LIST

10. ANYTYPE_READ

11. REALM_SEARCH

12. GROUP_SEARCH

13. GROUP_READ

14. GROUP_UPDATE

15. GROUP_DELETE

The GROUP_OWNER Role can be updated to adjust the set of assigned Entitlements.

3.7.2. Delegation

With Delegation, any user can delegate other users to perform operations on their behalf.

In order to set up a Delegation, the following information shall be provided:

28

• delegating User (mandatory) - administrators granted with DELEGATION_CREATE Entitlement can
create Delegations for all defined Users; otherwise, the only accepted value is the User itself;

• delegated User (mandatory) - any User defined, distinct from delegating;

• start (mandatory) - initial timestamp from which the Delegation is considered effective;

• end (optional) - final timestamp after which the Delegation is not considered effective: when not
provided, Delegation will remain valid unless deleted;

• roles (optional) - set of Roles granted by delegating to delegated User: only Roles owned by
delegating can be granted, when not provided all owned Roles are considered as part of the
Delegation.

Audit events generated when operating under Delegation will report both
delegating and delegated users.

3.8. Provisioning
As described above, provisioning is actually the core feature provided by Apache Syncope.

Essentially, it can be seen as the process of keeping the identity data synchronized between Syncope
and related external resources, according to the specifications provided by the mapping. It does this
by performing create, update and delete operations onto the internal storage or external resources
via connectors.

3.8.1. Overview

The picture below contains an expanded view of the core architecture, with particular reference to
the components involved in the provisioning process.

29

Figure 9. Provisioning flow

The provisioning operations can be initiated in several different ways:

• by creating, updating or deleting Users, Groups or Any Objects via REST (thus involving the
underlying logic layer)

• by requesting execution of pull or push tasks via REST

• by triggering periodic pull or push task executions

Provisioning Managers

The provisioning operations are defined by the provisioning manager interfaces:

• UserProvisioningManager

• GroupProvisioningManager

30

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/UserProvisioningManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/GroupProvisioningManager.java

• AnyObjectProvisioningManager

Default implementations are available:

• DefaultUserProvisioningManager

• DefaultGroupProvisioningManager

• DefaultAnyObjectProvisioningManager

3.8.2. Propagation

Whenever a change is performed via REST on Users, Groups or Any Objects:

1. a set of propagation tasks is generated, one for each associated external resource;

2. the generated propagation tasks are executed, e.g. the corresponding operations (create, update
or delete) are sent out, via connectors, to the configured Identity Stores; the tasks can be saved
for later re-execution.

Which external resources?

Depending on the entity being created / updated / deleted, different external
resources are taken into account by the propagation process:

• Group: only the external resources directly assigned

• User: the external resources directly assigned plus the ones assigned to Groups
configured for the User

• Any Object: the external resources directly assigned plus the ones assigned to
Groups configured for the Any Object

Adequate capabilities to Connectors and External Resources

Ensure to provide an adequate set of capabilities to underlying Connectors and
External Resources for the actual operations to perform, otherwise the
Propagation Tasks will report NOT_ATTEMPTED as execution status.

Propagate password values

Password values are kept in the internal storage according to the
password.cipher.algorithm configuration parameter, whose value is SHA1 by
default. SHA1 is a hash algorithm: this means that, once stored, the cleartext value
cannot be reverted any more.

During propagation, Syncope fetches all data of the given User, then prepares the
attributes to propagate, according to the provided mapping; password has a
special treatment:

• if cleartext value is available (this cannot happen during Push), it is sent to the
External Resource

• if password.cipher.algorithm is AES (the only supported reversible algorithm),

31

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/AnyObjectProvisioningManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/DefaultUserProvisioningManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/DefaultGroupProvisioningManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/DefaultAnyObjectProvisioningManager.java

then the ciphered password value is made cleartext again, and sent to the
External Resource

• if the GenerateRandomPasswordPropagationActions is enabled, a random
password value is generated according to the defined password policy and sent
to the External Resource

• otherwise, a null value is sent to the External Resource

Password values are always sent to External Resources wrapped as ConnId
GuardedString objects.

By default, the propagation process is controlled by the PriorityPropagationTaskExecutor, which
implements the following logic:

• sort the tasks according to the related resource’s priority, then execute sequentially

• tasks for resources with no priority are executed afterwards, concurrently

• the execution of a given set of tasks is halted (and global failure is reported) whenever the first
sequential task fails

• status and eventual error message (in case of no resource priority) can be saved for reporting,
in the case where the related external resource was configured with adequate tracing

• minimize the set of operations to be actually performed onto the Identity Store by attempting to
read the external object corresponding to the internal entity and comparing with the
modifications provided

Create or update?

The minimization performed by PriorityPropagationTaskExecutor might lead to
behaviors which look at first unexpected, but sound perfectly understandable
once explained; in particular:

• a CREATE propagation task might result in an effective UPDATE sent to the
Connector
if preliminary read returns an external object matching the same remote key
of the object requested to be created

• an UPDATE propagation task might result in an effective CREATE sent to the
Connector
if preliminary read does not find any external object matching the remote key
of the objected requested to be updated

Different implementations of the PropagationTaskExecutor interface can be provided, in case the
required behavior does not fit into the provided implementation.

PropagationActions

The propagation process can be decorated with custom logic to be invoked around task execution,
by associating external resources to one or more implementations of the PropagationActions
interface.

32

http://connid.tirasa.net/apidocs/1.5/org/identityconnectors/common/security/GuardedString.html
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/PriorityPropagationTaskExecutor.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/propagation/PropagationTaskExecutor.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/propagation/PropagationActions.java

Some examples are included by default, see table below.

AzurePropagationActions Required for setup of an External Resource based on the ConnId
Azure connector bundle.

DBPasswordPropagationActions If no password value was already provided in the propagation
task, sends out the internal password hash value to DBMS; the
cipher algorithm associated with the password must match the
value of Password cipher algorithm for the ConnId DatabaseTable
connector bundle.

GenerateRandomPasswordProp
agationActions

If no password value was already provided in the propagation
task, random password value is generated according to the
defined password policy and sent to the External Resource.

GoogleAppsPropagationActions Required for setup of an External Resource based on the ConnId
GoogleApps connector bundle.

LDAPMembershipPropagationA
ctions

If a User is associated with a Group in Syncope, keep the
corresponding User as a member of the corresponding Group in
LDAP or AD.

LDAPPasswordPropagationActi
ons

If no password value was already provided in the propagation
task, sends out the internal password hash value to LDAP; the
cipher algorithm associated with the password must match the
value of passwordHashAlgorithm for the LDAP connector bundle.

3.8.3. Pull

Pull is the mechanism used to acquire identity data from Identity Stores; for each external resource,
one or more pull tasks can be defined, run and scheduled for period execution.

Pull task execution involves querying the external resource for all mapped any types, sorted
according to the order defined by a custom implementation of ProvisionSorter or its default
implementation DefaultProvisionSorter .

Each entity is then processed in an isolated transaction; a retrieved entity can be:

1. matching if a corresponding internal entity was found, according to the mapping of - or the pull
policy set for, if present - the enclosing external resource;

2. unmatching otherwise.

Once this has been assessed, entities are processed according to the matching / unmatching rules
specified for the pull task: by default, unmatching entities get created internally, and matching
entities are updated.

Matching Rules

• IGNORE: do not perform any action;

• UPDATE: update matching entity;

33

https://github.com/apache/syncope/tree/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/AzurePropagationActions.java
https://connid.atlassian.net/wiki/display/BASE/Azure#Azure-Configuration
https://connid.atlassian.net/wiki/display/BASE/Azure#Azure-Configuration
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/DBPasswordPropagationActions.java
https://connid.atlassian.net/wiki/display/BASE/Database+Table#DatabaseTable-ConfigurationProperties
https://connid.atlassian.net/wiki/display/BASE/Database+Table#DatabaseTable-ConfigurationProperties
https://github.com/apache/syncope/tree/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/GenerateRandomPasswordPropagationActions.java
https://github.com/apache/syncope/tree/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/GenerateRandomPasswordPropagationActions.java
https://github.com/apache/syncope/tree/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/GoogleAppsPropagationActions.java
https://connid.atlassian.net/wiki/display/BASE/Google+Apps#GoogleApps-Configuration
https://connid.atlassian.net/wiki/display/BASE/Google+Apps#GoogleApps-Configuration
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/LDAPMembershipPropagationActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/LDAPMembershipPropagationActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/LDAPPasswordPropagationActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/LDAPPasswordPropagationActions.java
https://connid.atlassian.net/wiki/display/BASE/LDAP#LDAP-Configuration
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/ProvisionSorter.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/DefaultProvisionSorter.java

• DEPROVISION: delete external entity;

• UNLINK: remove association with external resource, without performing any (de-
)provisioning operation;

• LINK: associate with external resource, without performing any (de-)provisioning
operation;

• UNASSIGN: unlink and delete.

Unmatching Rules

• IGNORE: do not perform any action;

• UNLINK: do not perform any action;

• ASSIGN: create internally, assign the external resource;

• PROVISION: create internally, do not assign the external resource.

Pull Mode

The Identity Store can be queried in different ways, depending on the pull mode
that is specified:

FULL RECONCILIATION

The complete list of entities available is processed.

FILTERED RECONCILIATION

The subset matching the filter (provided by the selected implementation
of ReconFilterBuilder) of all available entities is processed.

INCREMENTAL

Only the actual modifications performed since the last pull task execution
are considered. This mode requires the underlying connector bundle to
implement the ConnId SYNC operation - only some of the available bundles
match this condition.
This is the only mode which allows pulling delete events, which may
end up causing the removal of internal entities.

Pull Templates

With every pull task it is possible to add a template for each defined any type.

As the values specified in the template are applied to pulled entities, this can be
used as mechanism for setting default values for attributes or external resources
on entities.

A typical use case is, when pulling Users from the external resource R, to
automatically assign R so that every further modification in Apache Syncope to

34

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/pushpull/ReconFilterBuilder.java

such Users will be propagated back to R.

PullActions

The pull process can be decorated with custom logic to be invoked around task execution, by
associating pull tasks to one or more implementations of the PullActions interface.

Some examples are included by default, see the table below.

ADMembershipPullActions If a User is associated with a Group in AD, keep the
corresponding User as a member of the corresponding Group in
Syncope.

LDAPMembershipPullActions If a User is associated with a Group in LDAP, keep the
corresponding User as a member of the corresponding Group in
Syncope.

LDAPPasswordPullActions Import hashed password values from LDAP; the cipher algorithm
associated with the password must match the value of
passwordHashAlgorithm for the LDAP connector bundle.

DBPasswordPullActions Import hashed password values from DBMS; the cipher
algorithm associated with the password must match the value of
Password cipher algorithm for the DatabaseTable connector
bundle.

Remediation

Errors during pull might arise for various reasons: values might not be provided for all mandatory
attributes or fail the configured validation, delete User as consequence of an incremental change’s
processing might be blocked because such User is configured as Group owner, and so on.

When Remediation is enabled for a certain Pull Task, execution errors are reported to
administrators, which are given the chance to examine and possibly fix, or just discard.

3.8.4. Push

With push, the matching set of internal entities can be sent to Identity Stores - mainly for
(re)initialization purposes; for each external resource, one or more push tasks can be defined, run
and scheduled for period execution.

Push task execution involves querying the internal storage for all mapped any types, sorted
according to the order defined by a custom implementation of ProvisionSorter or its default
implementation DefaultProvisionSorter .

Each entity is then processed in an isolated transaction; an internal entity can be:

1. matching if a corresponding remote entity was found, according to the push policy set for the
enclosing external resource;

2. unmatching otherwise.

35

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/pushpull/PullActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/ADMembershipPullActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/LDAPMembershipPullActions.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/LDAPPasswordPullActions.java
https://connid.atlassian.net/wiki/display/BASE/LDAP#LDAP-Configuration
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/DBPasswordPullActions.java
https://connid.atlassian.net/wiki/display/BASE/Database+Table#DatabaseTable-ConfigurationProperties
https://connid.atlassian.net/wiki/display/BASE/Database+Table#DatabaseTable-ConfigurationProperties
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/ProvisionSorter.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/DefaultProvisionSorter.java

Once this has been assessed, entities are processed according to the matching / unmatching rules
specified for the push task: by default, unmatching entities are pushed to Identity Stores, and
matching entities are updated.

Matching Rules

• IGNORE: do not perform any action;

• UPDATE: update matching entity;

• DEPROVISION: delete internal entity;

• UNLINK: remove association with external resource, without performing any (de-
)provisioning operation;

• LINK: associate with external resource, without performing any (de-)provisioning
operation;

• UNASSIGN: unlink and delete.

Unmatching Rules

• IGNORE: do not perform any action;

• UNLINK: remove association with external resource, without performing any (de-
)provisioning operation;

• ASSIGN: create externally, assign the external resource;

• PROVISION: create externally, do not assign the external resource.

PushActions

The push process can be decorated with custom logic to be invoked around task execution, by
associating push tasks to one or more implementations of the PushActions interface.

3.8.5. Password Reset

When users lost their password, a feature is available to help gaining back access to Apache
Syncope: password reset.

The process can be outlined as follows:

1. user asks for password reset, typically via end-user

2. user is asked to provide an answer to the security question that was selected during self-
registration or self-update

3. if the expected answer is provided, a unique token with time-constrained validity is internally
generated and an e-mail is sent to the configured address for the user with a link - again,
typically to the end-user - containing such token value

4. user clicks on the received link and provides new password value, typically via end-user

36

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/pushpull/PushActions.java

5. user receives confirmation via e-mail

The outlined procedure requires a working e-mail configuration.

In particular:

• the first e-mail is generated from the requestPasswordReset notification
template: hence, the token-based access link to the end-user is managed there;

• the second e-mail is generated from the confirmPasswordReset notification
template.

The process above requires the availability of security questions that users can
pick up and provide answers for.

The usage of security questions can be however disabled by setting the
passwordReset.securityQuestion value - see below for details.

Once provided via Enduser Application, the answers to security questions are
never reported, neither via REST or Admin UI to administrators, nor to end-users
via Enduser Application.

This to avoid any information disclosure which can potentially lead attackers to
reset other users' passwords.

In addition to the password reset feature, administrators can set a flag on a given
user so that he / she is forced to update their password value at next login.

3.9. Policies
Policies control different aspects. They can be used to fine-tune and adapt the overall mechanisms
to the particularities of the specific domain in which a given Apache Syncope deployment is
running.

Policy Composition

When defining policies and associating them with different realms and resources,
it is common to observe that several policies of the same type have to be enforced
on the same user, group or any object.

In such cases, Apache Syncope transparently composes all of the candidate policies
and obtains a single applicable policy which contains all the conditions of the
composing policies; this process, however, is not guaranteed to be successful, as
different policies of the same type might provide conflicting clauses.

3.9.1. Account

Account policies allow the imposition of constraints on username values, and are involved in the
authentication process.

37

When set for realm R, an account policy is enforced on all Users of R and sub-
realms.

When set for resource R, an account policy is enforced on all Users that have R
assigned.

When defining an account policy, the following information must be provided:

• max authentication attempts - how many times Users are allowed to fail authentication before
getting suspended

• propagate suspension - when suspended as a consequence of too many authentication failures,
should Users also be suspended on associated resources or not?

• pass-through resources - which external resources are involved with pass-through
authentication

• rules - set of account rules to evaluate with the current policy

Account Rules

Account rules define constraints to apply to username values.

Some implementations are provided out-of-the-box, custom ones can be provided on given
deployment.

As JAVA implementation, writing custom account rules means:

1. providing configuration parameters in an implementation of AccountRuleConf

2. enforcing in an implementation of AccountRule annotated via
@AccountRuleConfClass referring to the configuration class.

As GROOVY implementation, writing custom account rules means implementing
AccountRule

Default Account Rule

The default account rule (enforced by DefaultAccountRule and configurable via
DefaultAccountRuleConf) contains the following controls:

• maximum length - the maximum length to allow; 0 means no limit set;

• minimum length - the minimum length to allow; 0 means no limit set;

• pattern - Java regular expression pattern to match; NULL means no match is attempted;

• all uppercase - are lowercase characters allowed?

• all lowercase - are uppercase characters allowed?

• words not permitted - list of words that cannot be present, even as a substring;

• schemas not permitted - list of schemas whose values cannot be present, even as a substring;

• prefixes not permitted - list of strings that cannot be present as a prefix;

38

https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/policy/AccountRuleConf.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/AccountRule.java
https://github.com/apache/syncope/blob/master/core/persistence-api/src/main/java/org/apache/syncope/core/persistence/api/dao/AccountRuleConfClass.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/AccountRule.java
https://github.com/apache/syncope/blob/master/core/spring/src/main/java/org/apache/syncope/core/spring/policy/DefaultAccountRule.java
https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/policy/DefaultAccountRuleConf.java
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html

• suffixes not permitted - list of strings that cannot be present as a suffix.

Before being able to configure the default account rule as mentioned above, you
will need to first create a JAVA ACCOUNT_RULE implementation for the
org.apache.syncope.common.lib.policy.DefaultAccountRuleConf class.

Pass-through Authentication

During user authentication, if the resulting applicable account policy defines pass-through
resources, the provided credentials are verified first against the internal storage, then against each
configured external resource (provided that the underlying connector instance has the
AUTHENTICATE capability set): the first check that succeeds will successfully authenticate the user.

This feature allows, for example, to reuse credentials contained in Identity Stores (without
extracting them), instead of storing password values in the internal storage. It also facilitates
implementing authentication chains.

3.9.2. Password

Password policies allow the imposition of constraints on password values.

When set for realm R, a password policy is enforced on all Users of R and sub-
realms.

When set for resource R, a password policy is enforced on all Users that have R
assigned.

When defining a password policy, the following information must be provided:

• allow null password - whether a password is mandatory for Users or not

• history length - how many values shall be considered in the history

• rules - set of password rules to evaluate with the current policy

Password Rules

Password rules define constraints to apply to password values.

Some implementations are provided out-of-the-box, custom ones can be provided on given
deployment.

As JAVA implementation, writing custom password rules means:

1. providing configuration parameters in an implementation of
PasswordRuleConf

2. enforcing in an implementation of PasswordRule annotated via
@PasswordRuleConfClass referring to the configuration class.

As GROOVY implementation, writing custom account rules means implementing

39

https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/policy/PasswordRuleConf.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/PasswordRule.java
https://github.com/apache/syncope/blob/master/core/persistence-api/src/main/java/org/apache/syncope/core/persistence/api/dao/PasswordRuleConfClass.java

PasswordRule

Default Password Rule

The default password rule (enforced by DefaultPasswordRule and configurable via
DefaultPasswordRuleConf) is based on Passay and contains the following controls:

• maximum length - the maximum length to allow (0 means no limit set);

• minimum length - the minimum length to allow (0 means no limit set);

• alphabetical - the number of alphabetical characters required;

• uppercase - the number of uppercase characters required;

• lowercase - the number of lowercase characters required;

• digit - the number of digits required;

• special - the number of special characters required;

• special chars - the set of special characters allowed;

• illegal chars - the set of characters not allowed;

• repeat same - the size of the longest sequence of repeating characters allowed;

• username allowed - whether a username value can be used;

• words not permitted - list of words that cannot be present, even as a substring;

• schemas not permitted - list of schemas whose values cannot be present, even as a substring;

The default password rule can be extended to cover specific needs, relying on the
whole set of features provided by Passay.

Before being able to configure the default password rule as mentioned above, you
will need to first create a JAVA PASSWORD_RULE implementation for the
org.apache.syncope.common.lib.policy.DefaultPasswordRuleConf class.

"Have I Been Pwned?" Password Rule

This password rule (enforced by HaveIBeenPwnedPasswordRule and configurable via
HaveIBeenPwnedPasswordRuleConf) checks the provided password values against the popular
"Have I Been Pwned?" service.

Before being able to configure the "Have I Been Pwned?" password rule as
mentioned above, you will need to first create a JAVA PASSWORD_RULE
implementation for the
org.apache.syncope.common.lib.policy.HaveIBeenPwnedPasswordRuleConf class.

3.9.3. Access

Access policies provide fine-grained control over the access rules to apply to client applications.

The following access policy configurations are available by default:

40

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/PasswordRule.java
https://github.com/apache/syncope/blob/master/core/spring/src/main/java/org/apache/syncope/core/spring/policy/DefaultPasswordRule.java
https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/policy/DefaultPasswordRuleConf.java
https://www.passay.org/
https://www.passay.org/reference/
https://github.com/apache/syncope/blob/master/core/spring/src/main/java/org/apache/syncope/core/spring/policy/HaveIBeenPwnedPasswordRule.java
https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/policy/HaveIBeenPwnedPasswordRuleConf.java
https://haveibeenpwned.com

DefaultAccessPolicyConf It describes whether the client application is allowed to use WA,
allowed to participate in single sign-on authentication, etc;
additionally, it may be configured to require a certain set of
principal attributes that must exist before access can be granted.

HttpRequestAccessPolicyConf Make access decisions based on HTTP request properties as client
IP address and user-agent.

RemoteEndpointAccessPolicyCo
nf

Delegate access decisions to a remote endpoint by receiving the
authenticated principal as url parameter of a GET request; the
response code that the endpoint returns is then compared
against the policy setting and if a match is found, access is
granted.

TimeBasedAccessPolicyConf Access is only allowed within the configured timeframe.

Access Policy instances are dynamically translated into CAS Service Access
Strategy.

3.9.4. Attribute Release

Attribute Release policies decide how attributes are selected and provided to a given client
application in the final WA response.
Additionally, each instance has the ability to apply an optional filter to weed out their attributes
based on their values.

Attribute Release Policy instances are dynamically translated into CAS Attribute
Release Policy.

3.9.5. Authentication

WA presents a number of strategies for handling authentication security policies, based on the
defined authentication modules.
Authentication Policies in general control the following:

1. Should the authentication chain be stopped after a certain kind of authentication failure?

2. Given multiple authentication handlers in a chain, what constitutes a successful authentication
event?

Authentication Policies are typically activated after:

1. An authentication failure has occurred.

2. The authentication chain has finished execution.

Typical use cases of authentication policies may include:

1. Enforce a specific authentication module’s successful execution, for the entire authentication
event to be considered successful.

2. Ensure a specific class of failure is not evident in the authentication chain’s execution log.

41

https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/policy/DefaultAccessPolicyConf.java
https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/policy/HttpRequestAccessPolicyConf.java
https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/policy/RemoteEndpointAccessPolicyConf.java
https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/policy/RemoteEndpointAccessPolicyConf.java
https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/policy/TimeBasedAccessPolicyConf.java
https://apereo.github.io/cas/6.6.x/services/Configuring-Service-Access-Strategy.html#configure-service-access-strategy
https://apereo.github.io/cas/6.6.x/services/Configuring-Service-Access-Strategy.html#configure-service-access-strategy
https://apereo.github.io/cas/6.6.x/integration/Attribute-Release-Policies.html#attribute-release-policies
https://apereo.github.io/cas/6.6.x/integration/Attribute-Release-Policies.html#attribute-release-policies

3. Ensure that all authentication modules in the chain are executed successfully, for the entire
authentication event to be considered successful.

Authentication Policy instances are dynamically translated into CAS
Authentication Policy.

3.9.6. Propagation

Propagation policies are evaluated during the execution of propagation tasks and are meant to
tweak the propagation process by setting the pre-fetch option or letting Syncope to retry the
configured operations in case of failures.

When defining a propagation policy, the following information must be provided:

• fetch around provisioning - the default behavior is to attempt to read upfront the object being
propagated (to ensure it exists or not, depending on the actual operation scheduled to perform)
and to read it again afterwards (to check the effective results); this can be disabled

• update delta - in case of update, all object attributes are propagated by default; when enabled,
only the changed attributes will be instead propagated

• max number of attempts

• back-off strategy

◦ FIXED - pauses for a fixed period of time before continuing

◦ EXPONENTIAL - increases the back off period for each retry attempt in a given set up to a limit

◦ RANDOM - chooses a random multiple of the interval that would come from a simple
deterministic exponential

3.9.7. Pull

Pull policies are evaluated during the execution of pull tasks and are meant to:

1. help match existing Users, Groups and Any Objects during pull, thus generating update events
(rather than create)

2. determine which action shall be taken in case such match is not unique (e.g. what to do if the
same external account can be mapped to two distinct Users in Apache Syncope?)

When set for resource R, a pull policy is enforced on all Users, Groups and Any
Objects pulled from R.

When defining a pull policy, the following information must be provided:

• conflict resolution action

◦ IGNORE - do nothing

◦ FIRSTMATCH - pull first matching object only

◦ LASTMATCH - pull last matching object only

42

https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Policy.html#authentication-policy
https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Policy.html#authentication-policy

◦ ALL - pull all matching objects

• rules - set of correlation rules to evaluate with the current policy; for each defined any type, a
different rule is required

Pull Correlation Rules

Pull correlation rules define how to match objects received from External Resources with existing
Users (including Linked Accounts), Groups or Any Objects.

The default implementation attempts to match entities on the basis of the values of the provided
plain attributes, according to the available mapping.

Custom pull correlation rules can be provided by implementing the
PullCorrelationRule interface.

3.9.8. Push

Push policies are evaluated during the execution of push tasks.

When set for resource R, a push policy is enforced on all Users, Groups and Any
Objects pushed to R.

Push Correlation Rules

Push correlation rules define how to match Users (including Linked Accounts), Groups or Any
Objects with objects existing on External Resources.

The default implementation attempts to match entities on the basis of the values of the provided
plain attributes, according to the available mapping.

Custom push correlation rules can be provided by implementing the
PushCorrelationRule interface.

3.9.9. Ticket Expiration

Ticket Expiration policies control the duration of various types of WA sessions.

Ticket Expiration Policy instances are dynamically translated into their CAS
equivalent.

3.10. Workflow
Workflow manages the internal identity lifecycle by defining statuses and transitions that every
user, group or any object in Apache Syncope will traverse. A workflow instance is started once
identities get created, and shut down when they are removed.

Workflow is triggered during the provisioning process as the first step in creating, updating or

43

https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/DefaultPullCorrelationRule.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/PullCorrelationRule.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/DefaultPushCorrelationRule.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/rules/PushCorrelationRule.java
https://apereo.github.io/cas/6.6.x/ticketing/Configuring-Ticket-Expiration-Policy.html
https://apereo.github.io/cas/6.6.x/ticketing/Configuring-Ticket-Expiration-Policy.html

deleting identities into the internal storage.

Workflow Adapters

The workflow features are defined by the workflow adapter interfaces:

• UserWorkflowAdapter

• GroupWorkflowAdapter

• AnyObjectWorkflowAdapter

Default implementations are available:

• DefaultUserWorkflowAdapter

• DefaultGroupWorkflowAdapter

• DefaultAnyObjectWorkflowAdapter

Custom adapters can be provided by implementing the related interfaces, also as
bridges towards third-party tools as Camunda or jBPM.

Which workflow adapter for users?

1. Do you need approval management? Flowable

2. If approval management is not needed, do you want to customize the internal
user processing, or attach custom logic to it? Provide a Java class with your
customizations, extending DefaultUserWorkflowAdapter

3. No approval nor customizations needed? Stick with
DefaultUserWorkflowAdapter

3.10.1. Flowable User Workflow Adapter

An advanced adapter is provided for Users, based on Flowable, one of reference open source BPMN
2.0 implementations.

The FlowableUserWorkflowAdapter is bootstrapped from userWorkflow.bpmn20.xml and presents
several advantages and more features, if compared to the default user adapter:

1. Besides mandatory statuses, which are modeled as BPMN userTask instances, more can be freely
added at runtime, provided that adequate transitions and conditions are also inserted; more
details about available BPMN constructs are available in the Flowable User Guide.
Additional statuses and transitions allow the internal processes of Apache Syncope to better
adapt to suit organizational flows.

2. Custom logic can be injected into the workflow process by providing BPMN serviceTask
instances.

3. Flowable forms are used for implementing approval.

4. The Flowable Modeler is available with the admin console, thus allowing web-based graphical
modeling of the workflow definition.

44

https://github.com/apache/syncope/blob/master/core/workflow-api/src/main/java/org/apache/syncope/core/workflow/api/UserWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/core/workflow-api/src/main/java/org/apache/syncope/core/workflow/api/GroupWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/core/workflow-api/src/main/java/org/apache/syncope/core/workflow/api/AnyObjectWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/core/workflow-java/src/main/java/org/apache/syncope/core/workflow/java/DefaultUserWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/core/workflow-java/src/main/java/org/apache/syncope/core/workflow/java/DefaultGroupWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/core/workflow-java/src/main/java/org/apache/syncope/core/workflow/java/DefaultAnyObjectWorkflowAdapter.java
https://camunda.org/
http://jbpm.jboss.org/
https://github.com/apache/syncope/tree/master/core/workflow-java/src/main/java/org/apache/syncope/core/workflow/java/DefaultUserWorkflowAdapter.java
https://github.com/apache/syncope/tree/master/core/workflow-java/src/main/java/org/apache/syncope/core/workflow/java/DefaultUserWorkflowAdapter.java
https://www.flowable.org/
http://www.bpmn.org/
http://www.bpmn.org/
https://github.com/apache/syncope/blob/master/ext/flowable/flowable-bpmn/src/main/java/org/apache/syncope/core/flowable/impl/FlowableUserWorkflowAdapter.java
https://github.com/apache/syncope/blob/master/ext/flowable/flowable-bpmn/src/main/resources/userWorkflow.bpmn20.xml
https://www.flowable.org/docs/userguide/index.html#bpmnConstructs
https://www.flowable.org/docs/userguide/index.html#forms
https://www.flowable.org/docs/userguide/index.html#flowableModelerApp

Figure 10. Default Flowable user workflow

Approval

Every transition in the Flowable user workflow definition can be subjected to approval.

The underlying idea is that some kind of self-modifications (group memberships, external resource
assignments, …) might not be allowed to 'plain' Users, as there could be conditions which require
management approval. Managers could also be asked to complete the information provided before
the requested operation is finished.

In order to define an approval form, a dedicated BPMN userTask needs to be defined, following the
rules established for Flowable forms.

What is required for administrators to manage approval?

The following conditions must be met, for an User U to act as administrator for
approval:

1. U must own the following entitlements, for all the required realms:

a. USER_REQUEST_FORM_CLAIM

b. USER_REQUEST_FORM_LIST

c. USER_REQUEST_FORM_SUBMIT

d. USER_READ

2. The BPMN userTask must either indicate U among candidateUsers or at least one
of the groups assigned to U among candidateGroups, as required by Flowable’s
task assignment rules

45

https://www.flowable.org/docs/userguide/index.html#forms
https://www.flowable.org/docs/userguide/index.html#bpmnUserTaskUserAssignmentExtension
https://www.flowable.org/docs/userguide/index.html#bpmnUserTaskUserAssignmentExtension

The special super-user admin is entitled to manage all approvals, even those not
specifying any candidateUsers or candidateGroups.

Example 6. Approving self-registration

The snippet below shows how to define an approval form in XML; the same operation can be
performed via the Flowable Modeler.

<userTask id="createApproval" name="Create approval"
 flowable:candidateGroups="managingDirector"
 flowable:formKey="createApproval"> ①
 <extensionElements>
 <flowable:formProperty id="username" name="Username" type="string"
 expression="${userTO.username}" writable="false"/> ②
 <flowable:formProperty id="approve" name="Approve?" type="boolean"
 variable="approve" required="true"/> ③
 <flowable:formProperty id="rejectReason" name="Reason for rejecting"
type="string"
 variable="rejectReason"/>
 </extensionElements>
</userTask>

① formKey and id must be unique across the workflow definition, name is displayed by the
admin console; candidateGroups and candidateUsers might be defined, even both, to indicate
which Groups or Users should be managing these approvals; if none are specified, only
admin is entitled to manage such approval

② expression will be evaluated against the current requesting user (as workflow variable) and
related properties; read-only form input can be defined by setting writable="false"

③ exporting approval inputs into workflow variables is possible via the variable attribute;
required form input can be defined by setting required="true"

Once the form is defined, any modification subject to that approval will be manageable via the
admin console, according to the following flow (the actual operations on the admin console for the
sample above are reported below):

1. administrator A sees the new approval notifications

2. administrator A claims the approval and is then allowed to manage it

3. administrator A reviews the updated user, with ongoing modification applied (no actual
modification performed yet)

4. administrator A can approve or reject such modification

Request Management

Request management is a key-feature of Identity Governance and allows to define and manage, in a
structured way, whatever process intended to update identity attributes, memberships and
relationships.

46

https://www.flowable.org/docs/userguide/index.html#flowableModelerApp

Request examples are "assign mobile phone", "grant groups on AD" or "consent access to
application".

Users can initiate whichever request among the ones defined; once initiated, such requests will
follow their own path, which might also include one or more approval steps.

Example 7. Assigning printer to user

The BPMN process below shows how to define an user request in XML; the same operation can
be performed via the Flowable Modeler.

In this user request definition:

1. user selects one of printers defined in the system, for self-assignment

2. administrator approves user’s selection

3. a relationship between user and printer is established

<process id="assignPrinterRequest" name="Assign printer" isExecutable="true">
 <startEvent id="startevent1" name="Start"/>
 <endEvent id="endevent1" name="End"/>
 <sequenceFlow id="flow1" sourceRef="startevent1" targetRef="selectPrinter"/>
 <userTask id="selectPrinter" name="Select printer"
flowable:formKey="selectPrinter"
 flowable:assignee="${wfExecutor}"> ①
 <extensionElements>
 <flowable:formProperty id="printer" name="Printer"
 variable="printer" type="dropdown" required="true">
②
 <flowable:value id="dropdownValueProvider" name="printersValueProvider"/>
 </flowable:formProperty>
 <flowable:formProperty id="printMode" name="Preferred print mode?"
type="enum">
 <flowable:value id="bw" name="Black / White"/>
 <flowable:value id="color" name="Color"/>
 </flowable:formProperty>
 </extensionElements>
 </userTask>
 <userTask id="approvePrinter" name="Approve printer"
flowable:formKey="approvePrinter"> ③
 <extensionElements>
 <flowable:formProperty id="username" name="Username" type="string"
 expression="${userTO.username}" writable="false"/>
 <flowable:formProperty id="printer" name="Selected printer" type="string"
 expression="${printer}" writable="false"/>
 <flowable:formProperty id="approve" name="Approve?" type="boolean"
 variable="approve" required="true"/>
 </extensionElements>
 </userTask>
 <sequenceFlow id="sid-D7047714-8E57-46B8-B6D4-4844DE330329"
 sourceRef="selectPrinter" targetRef="approvePrinter"/>

47

https://www.flowable.org/docs/userguide/index.html#flowableModelerApp

 <serviceTask id="createARelationship" name="Create ARelationship"
 flowable:delegateExpression="${createARelationship}"/> ④
 <sequenceFlow id="sid-33880AE7-35C6-4A39-8E5B-12D8BA53F042"
 sourceRef="approvePrinter" targetRef="createARelationship"/>
 <sequenceFlow id="sid-831E1896-EDF9-4F7D-AA42-E86CC1F8C5D3"
 sourceRef="createARelationship" targetRef="endevent1"/>
</process>

① the first form defined is self-assigned to the user which has started this request

② the dropdown type is a Syncope extension of the form property types supported by Flowable
and allows to inject a list of elements via the dropdownValueProvider value (with name
printersValueProvider in this sample), which must be a Spring bean implementing the
DropdownValueProvider interface

③ the second form is a traditional approval form, as seen above

④ this is a FlowableServiceTask implementation which takes care of establishing the
relationship

3.11. Notifications
Apache Syncope can be instructed to send out notification e-mails when certain events occur.

Every notification generates one or more notification tasks, holding the actual e-mails to be sent.
The tasks are ordinarily scheduled for execution according to the value provided for
notificationjob.cronExpression - see below for details - and can be saved for later re-execution.

When defining a notification, the following information must be provided:

• notification template - template for e-mail generation

• sender - e-mail address appearing in the From field of the generated e-mail(s)

• subject - text used as e-mail subject

• recipient e-mail attribute - which user attribute shall be considered as e-mail address for
delivery (as users might in principle have different e-mail attributes)

• recipient(s) - the actual e-mail recipient(s) which can be specified either as:

◦ list of static e-mail addresses

◦ matching condition to be applied to available users

◦ Java class implementing the RecipientsProvider interface

• notification event(s) - event(s) triggering the enclosing notification

• about - the condition matching Users, Groups or Any Objects which are evaluated for the
specified events; for users, the matching entities can be also considered as additional recipients

• trace level - control how much tracing (including logs and execution details) shall be carried
over during execution of the generated notification tasks

48

https://www.flowable.org/docs/userguide/index.html#formProperties
https://github.com/apache/syncope/blob/master/ext/flowable/flowable-bpmn/src/main/java/org/apache/syncope/core/flowable/api/DropdownValueProvider.java
https://github.com/apache/syncope/blob/master/ext/flowable/flowable-bpmn/src/main/java/org/apache/syncope/core/flowable/task/FlowableServiceTask.java
https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/notification/RecipientsProvider.java

3.11.1. Notification Events

Notification (and Audit) events are essentially a means of identifying the invocation of specific
methods within the Core, in line with join points in the Aspect Oriented Programming (AOP).

An event is identified by the following five coordinates:

1. type - which can be one of

◦ LOGIC

◦ TASK

◦ PROPAGATION

◦ PULL

◦ PUSH

◦ CUSTOM

2. category - the possible values depend on the selected type: for LOGIC the Logic components
available, for TASK the various Scheduled Tasks configured, for PROPAGATION, PULL and PUSH the
defined Any Types

3. subcategory - completes category with external resource name, when selecting PROPAGATION, PULL
or PUSH

4. event type - the final identification of the event; depends on the other coordinates

5. success or failure - whether the current event shall be considered in case of success or failure

The admin console provides tooling to assist with the specification of valid events.

An event is uniquely identified by a string of the following form:

[type]:[category]:[subcategory]:[event type]:[SUCCESS|FAILURE]

Some samples:

• [PUSH]:[GROUP]:[resource-db-scripted]:[matchingrule_deprovision]:[SUCCESS]
successful Group push to the external resource resource-db-scripted, when
deprovisioning matching entities

• [LOGIC]:[RealmLogic]:[]:[create]:[FAILURE]
unsuccessful Realm creation

• [CUSTOM]:[]:[]:[unexpected identification]:[SUCCESS]
successful execution of the event identified by the unexpected identification
string

Custom events can be used to trigger notifications from non-predefined joint
points, as BPMN userTask instances within the Flowable User Workflow Adapter,
PropagationActions, PushActions, PullActions or other custom code.

49

https://en.wikipedia.org/wiki/Aspect-oriented_programming

3.11.2. Notification Templates

A notification template is defined as a pair of JEXL expressions, to be used respectively for plaintext
and HTML e-mails, and is available for selection in the notification specification.

 Notification templates can be easily managed via the admin console.

The full power of JEXL expressions - see reference and some examples - is available.
For example, the user variable, an instance of UserTO with actual value matching the about
condition as introduced above, can be used.

Example 8. Plaintext notification template

Hi ${user.getPlainAttr("firstname").get().values[0]}
${user.getPlainAttr("surname").get().values[0]},
 welcome to Syncope!

Your username is ${user.username}.
Your email address is ${user.getPlainAttr("email").get().values[0]}.

Best regards.

Example 9. HTML notification template

<html>
 <body>
 <h3>Hi ${user.getPlainAttr("firstname").get().values[0]}
${user.getPlainAttr("surname").get().values[0]},
 welcome to Syncope!</h3>
 <p>Your username is ${user.username}.

 Your email address is ${user.getPlainAttr("email").get().values[0]}.</p>
 <p>Best regards.</p>
 </body>
</html>

3.12. Commands
A Command is defined via an Implementation of type COMMAND, providing a Java or Groovy class for
the Command, interface, designed to optionally take parameters.

The typical use case is to encapsulate, in a single logical unit, the equivalent of two or more REST
calls.

Once defined, Commands can be executed via dedicated REST endpoints, or via Console UI.

50

http://commons.apache.org/proper/commons-jexl/
http://commons.apache.org/proper/commons-jexl/reference/syntax.html
http://commons.apache.org/proper/commons-jexl/reference/examples.html
https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/to/UserTO.java
https://github.com/apache/syncope/blob/master/core/idrepo/logic/src/main/java/org/apache/syncope/core/logic/api/Command.java

3.13. Tasks
Tasks control the effective operations that are ongoing in the Core.

Whilst tasks define what and how to perform, they are supposed to be run by some entity
(depending on the actual task type, see below for details); their execution result can be saved for
later examination.

3.13.1. Propagation

A propagation task encapsulates all the information that is required - according to the defined
mapping - to create, update or delete a given User, Group or Any Object, to / from a certain Identity
Store:

• operation - CREATE, UPDATE or DELETE

• connObjectKey - value for ConnId unique identifier on the Identity Store

• oldConnObjectKey - the former unique identifier on the Identity Store: bears value only during
updates involving the unique identifier

• attributes - set of ConnId attributes built upon internal identity data and configured mapping

• resource - related external resource

• objectClass - ConnId object class

• entity - reference to the internal identity: User, Group or Any Object

Propagation tasks are automatically generated via the configured
PropagationManager, executed (by default) via the
PriorityPropagationTaskExecutor during the propagation process, and are
permanently saved - for later re-execution or for examining the execution details -
depending on the trace levels set on the related external resource.

Automatic retry in case of failure can be configured by mean of a propagation
policy, for the related external resource.

3.13.2. Pull

Pull tasks are required to define and trigger the pull process from Identity Stores.

When defining a pull task, the following information must be provided:

• related external resource

• chosen pull mode

• destination Realm - where entities selected for creation are going to be placed

• whether creation, update or deletion on internal storage are allowed or not

• whether remediation is enabled

• whether to synchronize the status information from the related identity store

51

http://connid.tirasa.net/apidocs/1.5/org/identityconnectors/framework/common/objects/Uid.html
http://connid.tirasa.net/apidocs/1.5/org/identityconnectors/framework/common/objects/Attribute.html
http://connid.tirasa.net/apidocs/1.5/org/identityconnectors/framework/common/objects/ObjectClass.html
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/DefaultPropagationManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/propagation/PriorityPropagationTaskExecutor.java

• selected matching and unmatching rules

• optional pull action(s)

• entity templates

• scheduling information:

◦ when to start

◦ cron expression

Pull tasks are executed, either upon request or due to a schedule, via the
PullJobDelegate during the pull process, and are permanently saved - for later re-
execution or for examining the execution details - depending on the trace level set
on the related external resource.

DryRun

It is possible to simulate the execution of a pull (or push) task without performing
any actual modification by selecting the DryRun option. The execution results will
be still available for examination.

Concurrent Pull Task Executions

By default, pull tasks are set to accept and sequentially process the objects received
from the configured External Resource; it is also possible to configure a pull task to
work on several objects at once in order to speed up the overall execution time.

3.13.3. Push

Push tasks are required to define and trigger the push process to Identity Stores.

When defining a push task, the following information must be provided:

• related external resource

• source Realm - where entities to push will be read from

• filter information for selecting which internal entities will be pushed onto the identity store

• whether creation, update or deletion on the identity store are allowed or not

• whether to synchronize the status information with internal storage

• selected matching and unmatching rules

• optional push action(s)

• scheduling information:

◦ when to start

◦ cron expression

Push tasks are executed, either upon request or due to a schedule, via the
PushJobDelegate during the push process, and are permanently saved - for later
re-execution or for examining the execution details - depending on the trace level

52

https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/PullJobDelegate.java
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/pushpull/PushJobDelegate.java

set on the related external resource.

Concurrent Push Task Executions

By default, push tasks are set to sequentially send items to the configured External
Resource; it is also possible to configure a push task to work on several objects at
once in order to speed up the overall execution time.

3.13.4. Notification

A notification task encapsulates all the information that is required to send out a notification e-
mail, according to the specification provided in a given notification:

• entity - reference to the internal identity - User, Group or Any Object - the notification task
refers to

• sender e-mail address

• e-mail subject

• effective e-mail recipient(s)

• e-mail body as plaintext and / or HTML

Notification tasks are automatically generated via the NotificationManager,
executed via the NotificationJob and are permanently saved - for later re-
execution or for examining the execution details - depending on the trace level set
on the related notification.

3.13.5. Macros

Macro tasks are meant to group one or more Commands into a given execution sequence, alongside
with arguments required to run.

When defining a macro task, the following information must be provided:

• commands to run, with their args

• Realm for delegated administration to restrict the set of users entitled to list, update or execute
the given macro task

• scheduling information:

◦ when to start

◦ cron expression

3.13.6. Scheduled

Scheduled tasks allow for the injection of custom logic into the Core in the area of execution and
scheduling.

When defining a scheduled task, the following information must be provided:

53

https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/notification/DefaultNotificationManager.java
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/job/notification/NotificationJob.java
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression

• job delegate class: Java class extending AbstractSchedTaskJobDelegate providing the custom
logic to execute

• scheduling information:

◦ when to start

◦ cron expression

Scheduled tasks are ideal for implementing periodic checks or clean-up
operations, possibly in coordination with other components; some examples:

• move users from "pending delete" to "deleted" status 15 days after they
reached the "pending delete" status (requires interaction with Flowable User
Workflow Adapter)

• send out notification e-mails to users whose password is about to expire on an
Identity Store

• disable all users not logging into the system for the past 6 months

3.14. Reports
Reports are a powerful tool to extract, filter and format relevant information from a running
Apache Syncope deployment, for a wide range of purposes: from business to DevOps.

When defining a report, the following information must be provided:

• mime type and file extension: the type of content that the report is expected to generate

• job delegate class: Java class extending AbstractReportJobDelegate providing the custom logic to
extract information from Syncope and generate output according to the configured mime type

• scheduling information:

◦ when to start

◦ cron expression

3.15. Audit
The audit feature allows to capture events occurring within the Core and to store relevant
information about them.
By default, events are written as entries into the AuditEvent table of the internal storage.
Audit events can also be processed differently, for example when using the Elasticsearch extension.

Once events are reported, they can be used as input for external tools.

3.15.1. Audit Events

The information provided for notification events is also valid for audit events, including examples -
except for the admin console tooling, which is naturally distinct.

54

https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/job/AbstractSchedTaskJobDelegate.java
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression
https://en.wikipedia.org/wiki/DevOps
https://github.com/apache/syncope/blob/master/core/provisioning-java/src/main/java/org/apache/syncope/core/provisioning/java/job/report/AbstractReportJobDelegate.java
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression

3.15.2. Audit Event Processors

In addition to default processing, events are also available for custom handling via Audit Event
Processors. This allows to write implementations to route audit events to files, queues, sockets,
syslog, etc.

Custom implementations must implement the AuditEventProcessor interface.

3.16. Routes
Routes represents the main configuration to instruct SRA to respond to HTTP requests.

Every route is defined by providing the following information:

1. name - unique reference to the current route

2. target - base URI to proxy requests for

3. error URI - where to redirect in case of errors

4. type - PUBLIC or PROTECTED: the latter requires authentication against the configured Access
Manager

5. logout - whether to proceed with logout against the configured Access Manager

6. post-logout URI - where to redirect after logging out

7. CSRF - whether protection against Cross-Site Request Forgery shall be applied to incoming
requests

8. order - value to sort routes for evaluation

9. predicates - composed condition, supporting logic operators as AND, OR and NOT, to specify if
incoming requests shall match the owning route

10. filters - ordered list of elements allowing to perform modification of the incoming request and /
or outgoing response

55

https://github.com/apache/syncope/blob/master/core/provisioning-api/src/main/java/org/apache/syncope/core/provisioning/api/AuditEventProcessor.java
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Figure 11. SRA request processing

When an HTTP request is received, SRA evaluates all the configured predicates, sorted by their
owning route's order, to determine the first matching route among the ones defined.

If the matching route has type PROTECTED, the configured Access Manager is involved to authorize
the request; while WA works out-of-the-box, others can be configured, provided that they
implement standard protocols as OpenID Connect or SAML.

The incoming request is then pre-processed by matching route’s filters and sent to the configured
target.
The received response, after being post-processed by matching route’s filters, is finally returned to
the initial caller.

3.16.1. Predicates

Inside Route definition, each predicate will be referring to some Spring Cloud Gateway’s Predicate
factory:

• AFTER matches requests that happen after the specified datetime;

• BEFORE matches requests that happen before the specified datetime;

• BETWEEN matches requests that happen after first datetime and before second datetime;

• COOKIE matches cookies that have the given name and whose values match the regular
expression;

• HEADER matches with a header that has the given name whose value matches the regular
expression;

• HOST matches the Host header;

56

https://docs.spring.io/spring-cloud-gateway/docs/3.1.x/reference/html/#gateway-request-predicates-factories
https://docs.spring.io/spring-cloud-gateway/docs/3.1.x/reference/html/#gateway-request-predicates-factories

• METHOD matches the provided HTTP method(s);

• PATH matches the request path;

• QUERY matches the query string;

• REMOTE_ADDR matches the caller IP address;

• WEIGHT matches according to the weights provided per group of target URIs;

• CUSTOM matches according to a provided class extending CustomRoutePredicateFactory.

3.16.2. Filters

Inside Route definition, each filter will be referring to some Spring Cloud Gateway’s Filter factory:

• ADD_REQUEST_HEADER adds a header to the downstream request’s headers;

• ADD_REQUEST_PARAMETER adds a parameter too the downstream request’s query string;

• ADD_RESPONSE_HEADER adds a header to the downstream response’s headers;

• CLIENT_CERTS_TO_REQUEST_HEADER takes SSL certificates associated with the request to
downstream request’s headers;

• DEDUPE_RESPONSE_HEADER removes duplicate values of response headers;

• FALLBACK_HEADERS after an execution exception occurs, the request is forwarded to a fallback
endpoint; the headers with the exception type, message and (if available) root cause exception
type and message are added to that request;

• LINK_REWRITE rewrites HTTP links in the response body before it is sent back to the client;

• MAP_REQUEST_HEADER creates a new named header with the value extracted out of an existing
named header from the incoming request;

• PREFIX_PATH will prefix a part to the path of the incoming request;

• PRESERVE_HOST_HEADER sets a request attribute that the routing filter inspects to determine if the
original host header should be sent, rather than the host header determined by the HTTP client;

• PRINCIPAL_TO_REQUEST_HEADER takes authenticated principal to downstream request’s headers;

• QUERY_PARAM_TO_REQUEST_HEADER takes incoming query params to downstream request’s headers;

• REDIRECT_TO will send a HTTP status 30x with a Location header to perform a redirect;

• REMOVE_REQUEST_HEADER removes a header to the downstream request’s headers;

• REMOVE_RESPONSE_HEADER removes a header to the downstream response’s headers;

• REQUEST_HEADER_TO_REQUEST_URI changes the request URI by a request header;

• REQUEST_RATE_LIMITER determines if the current request is allowed to proceed: if it is not, a HTTP
status 429 is returned;

• RETRY attempts to connect to downstream request’s target for the given number of retries before
giving up;

• REWRITE_PATH uses regular expressions to rewrite the request path;

• REWRITE_LOCATION modifies the value of the Location response header;

57

https://github.com/apache/syncope/blob/master/sra/src/main/java/org/apache/syncope/sra/predicates/CustomRoutePredicateFactory.java
https://docs.spring.io/spring-cloud-gateway/docs/3.1.x/reference/html/#gatewayfilter-factories

• REWRITE_RESPONSE_HEADER modifies the value of response header;

• SECURE_HEADERS adds a number of recommended security headers to the response;

• SAVE_SESSION forces to save the current HTTP session before forwarding the call downstream;

• SET_PATH manipulates the request path;

• SET_REQUEST_HEADER replaces a header to the downstream request’s headers;

• SET_RESPONSE_HEADER replaces a header to the downstream response’s headers;

• SET_STATUS sets HTTP status to return to caller;

• SET_REQUEST_SIZE restricts a request from reaching the downstream service;

• SET_REQUEST_HOST sets host header to the downstream request’s headers;

• STRIP_PREFIX removes parts from the path of the incoming request;

• CUSTOM will manipulate downstream request or response according to a provided class
extending CustomGatewayFilterFactory.

3.17. Authentication Modules
Authentication Modules allow to specify how WA shall check the provided credentials against
specific technology or repository, in the context of a certain Authentication Policy.

Several authentication modules are provided:

• Principal Authentication:

◦ Database

◦ JAAS

◦ LDAP

◦ OpenID Connect

◦ OAuth2

◦ Syncope

◦ X509

◦ SAML

◦ Apple Signin

◦ Azure Active Directory

◦ Google OpenID

◦ Keycloak

• MFA:

◦ Duo Security

◦ Google Authenticator

 Custom authentication modules can be provided by implementing the

58

https://github.com/apache/syncope/blob/master/sra/src/main/java/org/apache/syncope/sra/filters/CustomGatewayFilterFactory.java
https://apereo.github.io/cas/6.6.x/authentication/Database-Authentication.html
https://apereo.github.io/cas/6.6.x/authentication/JAAS-Authentication.html
https://apereo.github.io/cas/6.6.x/authentication/LDAP-Authentication.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-Generic-OpenID-Connect.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-OAuth20.html
https://apereo.github.io/cas/6.6.x/authentication/Syncope-Authentication.html
https://apereo.github.io/cas/6.6.x/authentication/X509-Authentication.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-SAML.htmll
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-Apple.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-Azure-AD.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-Google-OpenID-Connect.html
https://apereo.github.io/cas/6.6.x/integration/Delegate-Authentication-Keycloak.html
https://apereo.github.io/cas/6.6.x/mfa/DuoSecurity-Authentication.html
https://apereo.github.io/cas/6.6.x/mfa/GoogleAuthenticator-Authentication.html

AuthModuleConf interface and extending appropriately the
WAPropertySourceLocator class.

Authentication Modules are dynamically translated into CAS Authentication
Handlers.

3.18. Attribute Repositories
Attribute Repositories allow to enrich the profile of an user authenticated by WA, in the context of a
certain Attribute Release Policy.

Some attribute repositories are provided:

• Database

• LDAP

• Stub

• Syncope

Custom authentication modules can be provided by implementing the
AttrRepoConf interface and extending appropriately the
WAPropertySourceLocator class.

Attribute Repositories are dynamically translated into CAS Attribute Resolution
configuration.

3.19. Client Applications
Client Applications represent web applications (including SRA) allowed to integrate with WA.

Depending on the communication protocol, the following client applications are supported:

• OpenID Connect Relying Party

• SAML 2.0 Service Provider

• CAS Service

When defining a client application, the following parameters shall be specified:

1. id - unique number identifier of the current client application

2. realm - used to inherit policies

3. name - regular expression to match requests

4. description - optional textual description

5. username attribute provider, mapping to CAS Attribute-based Principal Id

6. authentication policy

59

https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/auth/AuthModuleConf.java
https://github.com/apache/syncope/blob/master/wa/bootstrap/src/main/java/org/apache/syncope/wa/bootstrap/WAPropertySourceLocator.java
https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution-JDBC.html
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution-LDAP.html
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution-Stub.html
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution-Syncope.html
https://github.com/apache/syncope/blob/master/common/am/lib/src/main/java/org/apache/syncope/common/lib/attr/AttrRepoConf.java
https://github.com/apache/syncope/blob/master/wa/bootstrap/src/main/java/org/apache/syncope/wa/bootstrap/WAPropertySourceLocator.java
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution.html
https://apereo.github.io/cas/6.6.x/integration/Attribute-Release-PrincipalId-Attribute.html

7. access policy

8. attribute release policy

9. ticket expiration policy

10. additional properties

11. logout type, mapping to the equivalent CAS setting

More parameters are required to be specified depending on the actual client application type.

 Client Applications are dynamically translated into CAS Services.

3.20. Domains
Domains are built to facilitate multitenancy.

Domains allow the physical separation of all data managed by Apache Syncope, by storing the data
for different domains into different database instances. Therefore, Apache Syncope can facilitate
Users, Groups, Any Objects, External Resources, Policies, Tasks, etc. from different domains (e.g.
tenants) in a single Core instance.

By default, a single Master domain is defined, which also bears the configuration for additional
domains.

60

https://apereo.github.io/cas/6.6.x/installation/Logout-Single-Signout.html#slo-requests
https://apereo.github.io/cas/6.6.x/services/Service-Management.html
https://en.wikipedia.org/wiki/Multitenancy

Figure 12. Domains

Each domain’s persistence unit can be configured to work with one of the
supported DBMSes: Master can be on MySQL, Domain1 on PostgreSQL, DomainN on
Oracle and so on.

3.21. Implementations
It is possible to provide implementations suitable for customization as:

1. Java classes

2. Apache Groovy classes

While the former shows some advantages about execution performance, the latter is extremely
useful as it allows for runtime updates, freeing from the hassle to redeploy when something needs
to be changed.

With great power comes great responsibility

Customizing and extending the Core behavior by uploading a Groovy class via
REST adds further flexibility to the platform, allows to speed up the development
cycle and can be used as Swiss army knife for maintenance and administration.

61

http://www.groovy-lang.org/

Please beware that granting the permission to manage Implementations to non-
admin users can result in security threat, as there is virtually no limitation in what
the Groovy code has access to.

3.22. Extensions
The vanilla Apache Syncope deployment can be optional enriched with useful features via an
Extension, instead of bloating every single deployment with unneeded libraries and configurations.

With reference to architecture, an extension might add a REST endpoint, manage the persistence of
additional entities, extend the security mechanisms, tweak the provisioning layer, add features to
the Admin UI or the End-user UI, or even bring all such things together.

Extensions are available from different sources:

1. as Maven artifacts published from the Apache Syncope codebase, part of the official releases -
this is the case of the ones detailed below;

2. as Maven artifacts published by third parties;

3. as part of a given deployment source code, as explained in the following.

3.22.1. SAML 2.0 Service Provider for UI

This extension can be leveraged to provide SAML 2.0-based Single Sign-On access to the Admin UI,
the End-user UI or any other Java application dealing with the Core.

Once installed, one or more Identity Providers can be imported from their metadata. For each
Identity Provider, it is to configure which one of the attributes - returned as part of the assertion
containing the attribute statements - is going to be used by Syncope to match the internal users.

Extension Sources

The source code of this extension is available from the Apache Syncope source tree
.

This extension adds features to all components and layers that are available, and
can be taken as reference when creating new extensions.

3.22.2. OpenID Connect Client for UI

This extension can be leveraged to provide OpenID Connect-based Single Sign-On access to the
Admin UI, the End-user UI or any other Java application dealing with the Core.

Once installed, one or more OpenID Providers can be created either from the discovery document if
it is supported or from inserting manually the required attributes, in any case the client_id and the
client_secret from the OAuth 2.0 credential and the issuer are required. After configuring the
OpenID provider, the Authorization Code Flow is going to be implemented in order to reach the
user information to be used by Syncope to match the internal users.

62

https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/Identity_provider
https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Metadata
https://github.com/apache/syncope/tree/master/ext/saml2sp4ui
http://openid.net/connect/
https://en.wikipedia.org/wiki/Single_sign-on
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

Extension Sources

The source code of this extension is available from the Apache Syncope source tree
.

This extension adds features to all components and layers that are available, and
can be taken as reference when creating new extensions.

3.22.3. Elasticsearch

This extension provides an alternate internal search engine for Users, Groups and Any Objects
,Realms and Audit Events, requiring an external Elasticsearch cluster.

 This extension supports Elasticsearch server versions starting from 8.x.

As search operations are central for different aspects of the provisioning process,
the global performance is expected to improve when using this extension.

Extension Sources

The source code of this extension is available from the Apache Syncope source tree
.

3.22.4. OpenSearch

This extension provides an alternate internal search engine for Users, Groups and Any Objects
,Realms and Audit Events, requiring an external OpenSearch cluster.

As search operations are central for different aspects of the provisioning process,
the global performance is expected to improve when using this extension.

Extension Sources

The source code of this extension is available from the Apache Syncope source tree
.

3.22.5. SCIM

SCIM (System for Cross-domain Identity Management) 2.0 is the open API for managing identities,
published under the IETF:

1. Definitions, Overview, Concepts, and Requirements

2. Core Schema

3. Protocol

This extension enables an additional /scim REST endpoint, implementing the communication
according to the SCIM 2.0 standard, in order to provision User, Enterprise User and Group SCIM
entities to Apache Syncope.

63

https://github.com/apache/syncope/tree/master/ext/oidcc4ui
https://www.elastic.co/
https://github.com/apache/syncope/tree/master/ext/elasticsearch
https://opensearch.org/
https://github.com/apache/syncope/tree/master/ext/opensearch
http://www.simplecloud.info/
https://tools.ietf.org/html/rfc7642
https://tools.ietf.org/html/rfc7643
https://tools.ietf.org/html/rfc7644

Extension Sources

The source code of this extension is available from the Apache Syncope source tree
.

64

https://github.com/apache/syncope/tree/master/ext/scimv2

Chapter 4. Usage
Before proceeding, please ensure that you have access to a running Apache Syncope deployment.
You can take a look at the Apache Syncope Getting Started Guide to check system requirements and
to choose among the various options for obtaining Apache Syncope.

4.1. Admin Console
Once the deployment is ready, the admin console can be accessed at:

protocol://host:port/syncope-console/

where protocol, host and port reflect your deployment.

You should be greeted by the following web page.

You can use the default admin credentials to login.

4.1.1. Accessibility

The Admin UI is accessible to the visually impaired.

Two icons are present in the main login page and in the menu on the right:

65

https://syncope.apache.org/docs/getting-started.pdf

Figure 13. Admin Console accessibility buttons

By clicking the top right corner icon it is possible to toggle the "High contrast mode". In this
mode, the website colors are switched to a higher contrast color schema.

66

The H accesskey shortcut can be used to easily toggle "High contrast mode" by
using the keyboard.

E.g.

Shortcut Purpose

Alt + Shift + H Toggle "High contrast mode" on Firefox
and Chrome browsers on Linux

By clicking the second icon it is possible to toggle the "Increased font mode". In this mode, the
website font size is increased.

The F accesskey shortcut can be used to easily toggle "Increased font mode" by
using the keyboard.

E.g.

Shortcut Purpose

Alt + Shift + F Toggle "Increased font mode" on Firefox
and Chrome browsers on Linux

To reset to the default mode, it is enough to click again on the specific icon.

4.1.2. Pages

Dashboard

The dashboard provides an overall view of the current state of the Apache Syncope deployment. It
consists of various widgets and tabs that show the different metrics and details of each component
that is available.

67

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey

Realms

The realms page provides the designated administrators with the power to manage Realms as well
as Users, Groups and Any Objects, for all any types that are defined.

Engagements

From the engagements page it is possible to administer scheduled tasks, commands and macros.

Reports

The reports page presents the designated administrators with the list of reports configured on the
given deployment.

68

Topology

The topology page provides a mapped view of the connectors and external resources that are
available and configured in the given deployment.
Different actions are available when clicking on the various nodes.

SRA

From the SRA page it is possible to manage the routes served and to immediately deploy the
updated configuration.

69

WA

The WA page allows to manage authentication modules, client applications and other access
management features, and to immediately deploy the updated configuration.

Keymaster

Domains

Allows for domain management.

70

Network Services

Displays the components as registered in the configured keymaster instance.

Parameters

Presents the administrators with the list of defined configuration parameters used in the given
deployment such as token.expireTime and password.cipher.algorithm. These can be edited to further
customize the deployment.
New parameters can also be added, for use with custom code.

71

Configuration

The configuration pages allow the designated administrators to customize the given deployment to
fit the needs of the organization.

Audit

Controls the configuration of the auditing features.

Implementations

Allows the administrators to manage implementations.

Logs

The logging levels available can be dynamically adjusted; for example, the admin can set it to
display only the errors of io.swagger, in which case the warning and information logs will not be
reported.

Notifications

Gives access to the notification management.
This page also allows the administrators to create and edit notification templates.

Policies

Allows the administrators to manage all available type of policies.

Security

Displays and provides editing functionality for the security aspects, including roles, delegations
and security questions.

Types

Entry point for type management.

Extensions

The extensions configured for the given deployment are dynamically reported in the navigation
menu: each extension generally produces one or more pages and makes one or more widgets
available in the dashboard.

Approval

The images below refer to the self-registration approval sample and to the typical approval flow as
explained above.

Figure 14. Approval notification

72

Figure 15. Claiming an approval

Figure 16. Managing an approval

Figure 17. Approval form

73

Figure 18. Reviewing modifications

Figure 19. Approving modifications

User Requests

User requests are managed exactly in the same way how approvals are managed: check the typical
request management flow as explained above.

4.2. Enduser Application
Once the deployment is ready, the enduser application can be accessed at:

protocol://host:port/syncope-enduser/

74

where protocol, host and port reflect your deployment.

The scope of the enduser application is primarily to provide a dedicated web-based entry-point for
self-registration, self-service and password reset.

4.2.1. Accessibility

The End-user UI is accessible to the visually impaired.

Two icons are present in the main page, in the right corner:

75

Figure 20. Enduser accessibility icons

By clicking the top right corner icon it is possible to toggle the "High contrast mode". In this
mode, the website colors are switched to a higher contrast color schema.

The H accesskey shortcut can be used to easily toggle "High contrast mode" by
using the keyboard.

E.g.

Shortcut Purpose

Alt + Shift + H Toggle "High contrast mode" on Firefox
and Chrome browsers on Linux

By clicking the second icon it is possible to toggle the "Increased font mode". In this mode, the
website font size is increased.

The F accesskey shortcut can be used to easily toggle "Increased font mode" by
using the keyboard.

E.g.

76

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/accesskey

Shortcut Purpose

Alt + Shift + F Toggle "Increased font mode" on Firefox
and Chrome browsers on Linux

To reset to the default mode, it is enough to click again on the specific icon.

4.2.2. Pages

Home

The Home page provides a welcome page for logged-in users.

Personal Information

77

User Requests

The images below refer to the printer assignment sample and to the typical request management
flow as explained above.

78

Figure 21. Initial situation: no active requests

Figure 22. Starting new request

79

Figure 23. Filling request form

After submit, the request is ready to be managed by the configured administrators.

Password Reset

80

Figure 24. Password reset

4.3. Core
All the features provided by the Core are available as RESTful services.

The base URL for invoking such services is normally set as

protocol://host:port/syncope/rest/

where protocol, host and port reflect your deployment.

REST Reference

A complete REST reference generated from OpenAPI specification 3.0 is published
as well as made available with each deployment at

protocol://host:port/syncope/rest/openapi.json

where protocol, host and port reflect your deployment.

REST APIs are available to visualize and interact via Swagger UI at

protocol://host:port/syncope/

81

https://swagger.io/specification/
https://syncope.apache.org/rest/3.0/openapi.json
https://swagger.io/tools/swagger-ui/

4.3.1. REST Authentication and Authorization

The Core authentication and authorization is based on Spring Security.

As an initial step, authentication is required to obtain, in the X-Syncope-Token HTTP header, the
unique signed JSON Web Token to include in all subsequent requests.

By providing the token received in the initial exchange, the requester can be identified and checked
for authorization, based on owned entitlements.

Users can examine their own entitlements looking at the X-Syncope-Entitlements
header value, and their own privileges looking at the X-Syncope-Privileges header
value.

The relevant security configuration lies in securityContext.xml; while normally not
needed, this configuration can be anyway customized via the override behavior.

HTTP Basic Authentication is set for use by default.

JWTSSOProvider

Besides validating and accepting the JSON Web Tokens generated during the authentication process
as sketched above, Apache Syncope can be enabled to cope with tokens generated by third parties,
by providing implementations of the JWTSSOProvider interface.

Authorization Summary

The set of RESTful services provided by Apache Syncope can be divided as:

1. endpoints accessible without any sort of authentication (e.g. truly anonymous), for self-
registration and password reset;

2. endpoints disclosing information about the given Syncope deployment (available schema,
configured extensions, Groups, …), requiring some sort of shared authentication defined
by the anonymousKey value in the security.properties file - for more information, read
about Spring Security’s Anonymous Authentication;

3. endpoints for self-service (self-update, password change, …), requiring user
authentication and no entitlements;

4. endpoints for administrative operations, requiring user authentication with authorization
granted by the related entitlements, handed over to users via roles.

4.3.2. REST Headers

Apache Syncope supports a number of HTTP headers as detailed below, in addition to the common
HTTP headers such as Accept, Content-Type, etc.

 It is possible to deal with the headers below when using the Client Library via the

82

https://spring.io/projects/spring-security
https://en.wikipedia.org/wiki/JSON_Web_Token
https://github.com/apache/syncope/blob/master/core/spring/src/main/resources/securityContext.xml
https://en.wikipedia.org/wiki/Basic_access_authentication
https://github.com/apache/syncope/tree/master/core/spring/src/main/java/org/apache/syncope/core/spring/security/JWTSSOProvider.java
https://docs.spring.io/spring-security/site/docs/5.5.x/reference/html5/#anonymous

SyncopeClient class methods.

X-Syncope-Token

X-Syncope-Token is returned on response to successful authentication, and contains the unique
signed JSON Web Token identifying the authenticated user.

The value returned for the X-Syncope-Token header must be included in all subsequent requests, in
order for the requester to be checked for authorization, as part of the standard Bearer
Authorization header.

Example 10. Obtaining JWT with curl

curl -I -u admin:password -X POST
http://localhost:9080/syncope/rest/accessTokens/login

returns

HTTP/1.1 204
X-Syncope-Token: eyJ0e..

which can then be used to make a call to the REST API

curl -I -H "Authorization: Bearer eyJ0e.."
http://localhost:9080/syncope/rest/users/self

The token duration can be configured via the jwt.lifetime.minutes property - see below for details.

X-Syncope-Domain

X-Syncope-Domain can be optionally set for requests (when not set, Master is assumed) to select the
target domain.
The value for this header is provided in all responses.

X-Syncope-Key and Location

When creating an entity (User, Group, Schema, External Resource, …) these two headers are
populated respectively with the entity key (which may be auto-generated) and the absolute URI
identifying the new REST resource.

X-Application-Error-Code and X-Application-Error-Info

If the requested operation is in error, X-Application-Error-Code will contain the error code (mostly
from ClientExceptionType) and X-Application-Error-Info might be optionally populated with more
details, if available.

83

https://en.wikipedia.org/wiki/JSON_Web_Token
https://tools.ietf.org/html/rfc6750
http://curl.haxx.se/
https://github.com/apache/syncope/blob/master/common/idrepo/lib/src/main/java/org/apache/syncope/common/lib/types/ClientExceptionType.java

X-Syncope-Delegated-By

When requesting an operation under Delegation, this header must be provided to indicate the
delegating User, either by their username or key.

X-Syncope-Null-Priority-Async

When set to true, this request header instructs the propagation process not to wait for completion
when communicating with External Resources with no priority set.

Prefer and Preference-Applied

Some REST endpoints allow the clients to request certain behavior; this is done via the Prefer
header.

When Prefer is specified in the request, the response will feature the Preference-Applied header,
with value set to the effective preference applied.

return-content / return-no-content

REST endpoints for creating, updating or deleting Users, Groups or Any Objects return the entity in
the response payload by default.
If this is not required, the Prefer request header can be set to return-no-content (return-content will
instead keep the default behavior).

Use Prefer: return-no-content in scenarios where it is important to avoid
unnecessary data in the response payload.

respond-async

The Batch endpoint can be requested for asynchronous processing.

ETag, If-Match and If-None-Match

For each response containing Users, Groups or Any Objects, the ETag header is generated, which
contains the latest modification date.

This value can be passed, during subsequent requests to modify the same entity, via the If-Match or
If-None-Match headers.
When the provided If-Match value does not match the latest modification date of the entity, an
error is reported and the requested operation is not performed.

The combined usage of ETag and If-Match can be enforced to implement optimistic
concurrency control over Users, Groups and Any Objects operations.

X-Syncope-Entitlements

When invoking the REST endpoint /users/self in GET, the X-Syncope-Entitlements response header
will list all the entitlements owned by the requesting user.

84

https://en.wikipedia.org/wiki/HTTP_ETag

X-Syncope-Delegations

When invoking the REST endpoint /users/self in GET, the X-Syncope-Delegations response header
will list all delegating users for each Delegation for which the requesting user is delegated.

X-Syncope-Privileges

When invoking the REST endpoint /users/self in GET, the X-Syncope-Privileges response header
will list all the privileges owned by the requesting user.

4.3.3. Batch

Batch requests allow grouping multiple operations into a single HTTP request payload.
A batch request is represented as a Multipart MIME v1.0 message, a standard format allowing the
representation of multiple parts, each of which may have a different content type (currently JSON,
YAML or XML), within a single request.

Batch requests are handled by the /batch REST endpoint: via HTTP POST method to submit requests,
via HTTP GET method to fetch responses asynchronously.

The specification and implementation of batch processing in Apache Syncope is
inspired by the standards defined by OData 4.0

Batch requests

The batch request must contain a Content-Type header specifying a content type of multipart/mixed
and a boundary specification as defined in RFC2046.

The body of a batch request is made up of a series of individual requests, each represented as a
distinct MIME part (i.e. separated by the boundary defined in the Content-Type header).

Core will process the requests within a batch request sequentially.

An individual request must include a Content-Type header with value application/http and a
Content-Transfer-Encoding header with value binary.

Example 11. Sample batch request

--batch_61bfef8d-0a00-41aa-b775-7b6efff37652 ①
Content-Type: application/http
Content-Transfer-Encoding: binary
^M ②
POST /users HTTP/1.1 ③
Accept: application/json
Content-Length: 1157
Content-Type: application/json
^M
{"@class":"org.apache.syncope.common.lib.to.UserTO","key":null,"type":"USER","real
m":"/"}
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652

85

https://tools.ietf.org/html/rfc2046
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html#_Toc372793748
https://tools.ietf.org/html/rfc2046

Content-Type: application/http
Content-Transfer-Encoding: binary
^M
POST /groups HTTP/1.1 ④
Accept: application/xml
Content-Length: 628
Content-Type: application/xml
^M
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><syncope30:group
xmlns:syncope30="https://syncope.apache.org/3.0">
</syncope30:group>
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652
Content-Type: application/http
Content-Transfer-Encoding: binary
^M
PATCH /users/24eb15aebatch@syncope.apache.org HTTP/1.1 ⑤
Accept: application/json
Content-Length: 362
Content-Type: application/json
Prefer: return-no-content
^M
{"@class":"org.apache.syncope.common.lib.request.UserUR","key":"24eb15aebatch@sync
ope.apache.org"}
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652
Content-Type: application/http
Content-Transfer-Encoding: binary
^M
DELETE /groups/287ede7c-98eb-44e8-979d-8777fa077e12 HTTP/1.1 ⑥
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652--

① message boundary

② represents CR LF

③ user create, with JSON payload (shortened)

④ group create, with XML payload (shortened)

⑤ user update, with JSON payload (shortened)

⑥ group delete

Batch responses

Requests within a batch are evaluated according to the same semantics used when the request
appears outside the context of a batch.

The order of individual requests in a batch request is significant.

If the set of request headers of a batch request are valid (the Content-Type is set to multipart/mixed,
etc.) Core will return a 200 OK HTTP response code to indicate that the request was accepted for
processing, and the related execution results.

86

If Core receives a batch request with an invalid set of headers it will return a 400 Bad Request code
and perform no further processing of the request.

A response to a batch request must contain a Content-Type header with value multipart/mixed.

Structurally, a batch response body must match one-to-one with the corresponding batch request
body, such that the same multipart MIME message structure defined for requests is used for
responses

Example 12. Sample batch response

--batch_61bfef8d-0a00-41aa-b775-7b6efff37652 ①
Content-Type: application/http
Content-Transfer-Encoding: binary
^M ②
HTTP/1.1 201 Created ③
Content-Type: application/json
Date: Thu, 09 Aug 2018 09:55:46 GMT
ETag: "1533808545975"
Location: http://localhost:9080/syncope/rest/users/d399ba84-12e3-43d0-99ba-
8412e303d083
X-Syncope-Domain: Master
X-Syncope-Key: d399ba84-12e3-43d0-99ba-8412e303d083
^M
{"entity":{"@class":"org.apache.syncope.common.lib.to.UserTO"}
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652
Content-Type: application/http
Content-Transfer-Encoding: binary
^M
HTTP/1.1 201 Created ④
Content-Type: application/xml
Date: Thu, 09 Aug 2018 09:55:46 GMT
ETag: "1533808546342"
Location: http://localhost:9080/syncope/rest/groups/843b2fc3-b8a8-4a8b-bb2f-
c3b8a87a8b2e
X-Syncope-Domain: Master
X-Syncope-Key: 843b2fc3-b8a8-4a8b-bb2f-c3b8a87a8b2e
^M
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<syncope30:provisioningResult
xmlns:syncope30="https://syncope.apache.org/3.0"></syncope30:provisioningResult>
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652
Content-Type: application/http
Content-Transfer-Encoding: binary
^M
HTTP/1.1 204 No Content ⑤
Content-Length: 0
Date: Thu, 09 Aug 2018 09:55:47 GMT
Preference-Applied: return-no-content
X-Syncope-Domain: Master

87

^M
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652
Content-Type: application/http
Content-Transfer-Encoding: binary
^M
HTTP/1.1 200 OK ⑥
Content-Type: application/json
Date: Thu, 09 Aug 2018 09:55:47 GMT
X-Syncope-Domain: Master
^M
{"entity":{"@class":"org.apache.syncope.common.lib.to.GroupTO"}
--batch_61bfef8d-0a00-41aa-b775-7b6efff37652--

① message boundary (same as request)

② represents CR LF

③ user create response, with JSON payload (shortened)

④ group create respose, with XML payload (shortened)

⑤ user update, no content as Prefer: return-no-content was specified

⑥ group delete response, with JSON payload (shortened)

Asynchronous Batch Processing

Batch requests may be executed asynchronously by including the respond-async preference in the
Prefer header.

Core will return an empty response, with status 202 Accepted.

Clients can poll the /batch endpoint in GET by passing the same boundary used for request: if 202
Accepted is returned, then the request is still under processing; otherwise, 200 OK will be returned,
along with the full batch response.
Once retrieved, the batch response is not available any more from the /batch endpoint.

4.3.4. Search

It is possible to search for Users, Groups and Any Objects matching a set of given conditions
expressed through FIQL.

The Feed Item Query Language (FIQL, pronounced “fickle”) is a simple but flexible, URI-friendly
syntax for expressing filters across the entries in a syndicated feed.

The FIQL queries can be passed (among other parameters) to the search endpoints available, e.g.

• GET /users?fiql=query

• GET /groups?fiql=query

• GET /anyObjects?fiql=query

• GET /resources/{resource}/{anytype}?fiql=query

88

https://cxf.apache.org/docs/jax-rs-search.html#JAX-RSSearch-FeedItemQueryLanguage
https://tools.ietf.org/html/draft-nottingham-atompub-fiql-00

where:

• query is an URL-encoded string representation of the given FIQL query, as in the following
examples;

• resource is one of defined external resources;

• anytype is one of defined any types.

Example 13. Simple attribute match

username==rossini

Example 14. Wildcard attribute match

username==*ini

Example 15. Case-insensitive attribute match

username=~rOsSiNi

Example 16. Case-insensitive wildcard attribute match

username=~*iNi

Example 17. Null attribute match

loginDate==$null

Example 18. Date attribute comparison

lastLoginDate=ge=2016-03-02 15:21:22

Example 19. Auxiliary Any Type class assignment

$auxClasses==csv

89

Example 20. Resource assignment match

$resources==resource-ldap

Example 21. Group membership match (only for Users and Any Objects)

$groups==root

Example 22. Wildcard group membership match (only for Users and Any Objects)

$groups==*child

Example 23. Role membership match (only for Users)

$roles==Other

Example 24. Relationship type match (only for Users and Any Objects)

$relationshipTypes==neighborhood

Example 25. Relationship match (only for Users and Any Objects)

$relationships==Canon MF 8030c

Example 26. Type match (only for Any Objects)

$type==PRINTER

Example 27. Complex match (featuring logical AND and OR)

username=~*iNi;(loginDate==$null,$roles==Other)

90

Sorting Search Results

Search results can be requested for sorting by passing the optional orderBy query parameter to the
search endpoints available, e.g.

• GET /users?fiql=query&orderBy=sort

• GET /groups?fiql=query&orderBy=sort

• GET /anyObjects?fiql=query&orderBy=sort

• GET /resources/{resource}/{anytype}?orderBy=sort

where sort is an URL-encoded string representation of the sort request, as in the following
examples.

Example 28. Single attribute sort, default direction (ASC)

username

Example 29. Single attribute sort, with direction

username DESC

Example 30. Multiple attribute sort, with directions

email DESC, username ASC

4.4. Client Library
The Java client library simplifies the interaction with the Core by hiding the underlying HTTP
communication details and providing native methods and payload objects.

The library is available as a Maven artifact:

<dependency>
 <groupId>org.apache.syncope.client.idrepo</groupId>
 <artifactId>syncope-client-idrepo-lib</artifactId>
 <version>4.0.0-SNAPSHOT</version>
</dependency>

Do not forget to add the following repository to your pom.xml:

<repository>

91

 <id>ASF</id>

<url>https://repository.apache.org/content/repositories/snapshots/</url
>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
</repository>

Initialization

First you need to build an instance of SyncopeClientFactoryBean by providing the deployment base
URL, as follows:

SyncopeClientFactoryBean clientFactory = new SyncopeClientFactoryBean().
 setAddress("http://localhost:9080/syncope/rest/");

You might also select a specific domain - other than Master, choose to exchange XML payloads -
rather than JSON (default), to select HTTP compression or to set the TLS client configuration (more
options in the Javadoc):

TLSClientParameters tlsClientParameters = ...;
SyncopeClientFactoryBean clientFactory = new SyncopeClientFactoryBean().
 setAddress("http://localhost:9080/syncope/rest/").
 setDomain("Two").
 setContentType(SyncopeClientFactoryBean.ContentType.XML).
 setUseCompression(true).
 setTlsClientParameters(tlsClientParameters);

At this point an instance of SyncopeClient can be obtained by passing the login credentials via:

SyncopeClient client = clientFactory.create("admin", "password");

Or you can combine into a single statement as:

SyncopeClient client = new SyncopeClientFactoryBean().
 setAddress("http://localhost:9080/syncope/rest/").
 create("admin", "password");

Examples

Select one of the RESTful services and invoke one of the available methods:

LoggerService loggerService = client.getService(LoggerService.class);

92

https://en.wikipedia.org/wiki/HTTP_compression
https://cxf.apache.org/javadoc/latest/org/apache/cxf/configuration/jsse/TLSClientParameters.html
https://syncope.apache.org/apidocs/3.0/org/apache/syncope/client/lib/SyncopeClientFactoryBean.html
https://syncope.apache.org/apidocs/3.0/org/apache/syncope/common/rest/api/service/package-summary.html

LoggerTO loggerTO = loggerService.read(LoggerType.LOG,
"org.apache.syncope.core.connid");
loggerTO.setLevel(LoggerLevel.DEBUG);

loggerService.update(LoggerType.LOG, loggerTO);

Advanced REST features are also available from SyncopeClient instances: check the
javadoc for more information.

Example 31. Search for Users, Groups or Any Objects

All search operations return paged result handlers which can be exploited both for getting the
actual results and for extrapolating pagination coordinates.

UserService userService = client.getService(UserService.class);

int count = userService.search(new
AnyQuery.Builder().page(0).size(0).build()).getTotalCount(); ①

PagedResult<UserTO> matchingUsers = userService.search(
 new AnyQuery.Builder().realm(SyncopeConstants.ROOT_REALM).
 fiql(SyncopeClient.getUserSearchConditionBuilder().is("username").
 equalTo("ros*ini").query()).build()); ②

PagedResult<UserTO> matchingUsers = userService.search(
 new AnyQuery.Builder().realm(SyncopeConstants.ROOT_REALM).

fiql(SyncopeClient.getUserSearchConditionBuilder().isNull("loginDate").query()).
 build()); ③

PagedResult<UserTO> matchingUsers = userService.search(
 new AnyQuery.Builder().realm(SyncopeConstants.ROOT_REALM).
 fiql(SyncopeClient.getUserSearchConditionBuilder().inRoles("Other").query()).
 build()); ④

AnyObjectService anyObjectService = client.getService(AnyObjectService.class);

PagedResult<AnyObjectTO> matchingAnyObjects = anyObjectService.search(
 new AnyQuery.Builder().realm(SyncopeConstants.ROOT_REALM).
 fiql(SyncopeClient.getAnyObjectSearchConditionBuilder("PRINTER").query()).
 build()); ⑤

GroupService groupService = client.getService(GroupService.class);

PagedResult<GroupTO> matchingGroups = groupService.search(
 new AnyQuery.Builder().realm("/even/two").page(3).size(150).
 fiql(SyncopeClient.getGroupSearchConditionBuilder().
 is("name").equalTo("palo*").query()).

93

https://syncope.apache.org/apidocs/3.0/org/apache/syncope/client/lib/SyncopeClient.html
https://syncope.apache.org/apidocs/3.0/org/apache/syncope/client/lib/SyncopeClient.html
https://syncope.apache.org/apidocs/3.0/org/apache/syncope/common/lib/to/PagedResult.html

 build()); ⑥

① get the total number of users available in the given deployment (and domain)

② get users in the root realm with username matching the provided wildcard expression

③ get users in the root realm with no values for loginDate, i.e. that have never authenticated
to the given deployment

④ get users in the root realm with role Other assigned

⑤ get all any objects in the root realm with type PRINTER

⑥ get all groups having name starting with prefix 'palo' - third page of the result, where each
page contains 150 items

Example 32. Delete several users at once

BatchRequest batchRequest = client.batch(); ①

UserService batchUserService = batchRequest.getService(UserService.class);

final int pageSize = 100;
final int count = userService.search(
 new AnyQuery.Builder().page(0).size(0).build()).getTotalCount(); ②
for (int page = 1; page <= (count / pageSize) + 1; page++) {
 for (UserTO user : userService.search(
 new AnyQuery.Builder().page(page).size(pageSize).build()).getResult())
{ ③

 batchUserService.delete(user.getKey()); ④
 }
}

BatchResponse batchResponse = batchRequest.commit(); ⑤
List<BatchResponseItem> batchResponseItems = batchResponse.getItems(); ⑥

① begin the batch request

② get the total number of users available in the given deployment (and domain)

③ loop through all users available, using paginated search

④ add each user’s deletion to the batch request

⑤ send the batch request for processing

⑥ examine the batch results

Example 33. Self-read own profile information

Triple<Map<String, Set<String>>, List<String>, UserTO> self = client.self();
UserTO userTO = self.getRight(); ①

94

Map<String, Set<String>> realm2entitlements = self.getLeft(); ②
List<String> delegations = self.getMiddle(); ③

① UserTO of the requesting user

② for each realm, the owned entitlements

③ delegations assigned to the requesting user

Example 34. Change user status

String key = ...; ①
StatusR statusR = new StatusR();
statusR.setKey(key);
statusR.setType(StatusRType.SUSPEND); ②
UserTO userTO = userService.status(statusR).
 readEntity(new GenericType<ProvisioningResult<UserTO>>() {
 }).getEntity(); ③

① assume the key of the user to be suspended is known in advance

② ACTIVATE, SUSPEND, REACTIVATE values are accepted, and honoured depending on the actual
status of the user being updated

③ request for user update and read back the updated entity

4.5. Customization

Only Maven projects can be customized: if using Standalone, none of the
customizations discussed below can be applied.

Apache Syncope is designed to be as flexible as possible, to best suit the various environments in
which it can be deployed. Besides other aspects, this means that every feature and component can
be extended or replaced.

Once the project has been created from the provided Maven archetype, the generated source tree is
available for either adding new features or replacing existing components.

In general, the Embedded Mode (see the Apache Syncope Getting Started Guide for details) allows
developers to work comfortably from a single workstation, with no need of additional setup; it is
effectively implemented as the all Maven profile, where the available optional components and
extensions are enabled.
When deploying the generated artifacts as Standalone or into an external JavaEE Container
however, the required components and extensions need to be explicitly selected and enabled, as
shown in the following text.

The artifacts are generated by running the Maven command (with reference to the suggested
directory layout):

95

https://syncope.apache.org/apidocs/3.0/org/apache/syncope/common/lib/to/UserTO.html
https://syncope.apache.org/docs/getting-started.pdf
https://maven.apache.org/guides/introduction/introduction-to-profiles.html

$ mvn clean verify
$ cp core/target/classes/*properties /opt/syncope/conf
$ cp console/target/classes/*properties /opt/syncope/conf
$ cp enduser/target/classes/*properties /opt/syncope/conf
$ cp enduser/target/classes/*json /opt/syncope/conf
$ cp wa/target/classes/*properties /opt/syncope/conf
$ cp sra/target/classes/*properties /opt/syncope/conf

After downloading all of the dependencies that are needed, three following artifacts will be
produced:

1. core/target/syncope.war

2. console/target/syncope-console.war

3. enduser/target/syncope-enduser.war

4. wa/target/syncope-wa.war

5. sra/target/syncope-sra.jar

If no failures are encountered, your basic Apache Syncope project is now ready to be deployed.

Do not forget to define the following system properties:

• -Dsyncope.conf.dir=/opt/syncope/conf
(required by Core and WA)

• -Dsyncope.connid.location=file:/opt/syncope/bundles
(required by Core)

• -Dsyncope.log.dir=/opt/syncope/log
(required by all components)

JPDA Debug in Embedded Mode

The Java™ Platform Debugger Architecture (JPDA) is a collection of APIs aimed to
help with debugging Java code.

Enhancing the embedded profile of the fit module to enable the JPDA socket is quite
straightforward: just add the <profile> below to fit/pom.xml:

<profile>
 <id>debug</id>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven3-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <configuration>

96

https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html

 <properties>
 <cargo.jvmargs>
 -Xdebug

-Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n
 -Dspring.profiles.active=embedded
 -Xmx1024m -Xms512m
 </cargo.jvmargs>
 </properties>
 </configuration>
 </configuration>
 </plugin>
 </plugins>
 </build>
</profile>

Now, from the fit subdirectory, execute:

$ mvn -P embedded,debug

At this point your favourite IDE can be attached to the port 8000.

4.5.1. General considerations

Override behavior

As a rule of thumb, any file of the local project will take precedence over a file with the same name
in the same package directory of the standard Apache Syncope release.

For example, if you place

core/src/main/java/org/apache/syncope/core/spring/security/UsernamePasswordAuthenticat
ionProvider.java

in the local project, this file will be picked up instead of UsernamePasswordAuthenticationProvider.

The same happens with resources as images or HTML files; if you place

console/src/main/resources/org/apache/syncope/client/console/pages/BasePage.html

in the local project, this file will be picked up instead of BasePage.html.

Extending configuration

Apache Syncope components are built on Spring Boot, hence designing and extending Syncope
configuration very much comes down to their guide, some aspects of which are briefly highlighted

97

https://github.com/apache/syncope/blob/master/core/spring/src/main/java/org/apache/syncope/core/spring/security/UsernamePasswordAuthenticationProvider.java
https://github.com/apache/syncope/blob/master/client/idrepo/console/src/main/resources/org/apache/syncope/client/console/pages/BasePage.html
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/html/

here.

To design your own configuration class, take inspiration from the following sample:

package org.apache.syncope.custom.config;

@Configuration("SomethingConfiguration") ①
@EnableConfigurationProperties(LogicProperties.class)
public class SomethingConfiguration {

 @Autowired
 private LogicProperties logicProperties;

 @Autowired
 @Qualifier("someOtherBeanId")
 private SomeBean someOtherBeanId;

 @RefreshScope ②
 @Bean
 public MyBean myBean() {
 return new MyBean();
 }
}

① @Configuration classes can be assigned an order with @Order(1984) which would place them in an
ordered queue waiting to be loaded in that sequence; to be more explicit, @Configuration classes
can also be loaded exactly before/after another @Configuration component with
@AutoConfigureBefore or @AutoConfigureAfter annotations.

② The @Bean definitions can also be tagged with @RefreshScope to become auto-reloadable when the
enclosing Syncope componet context is refreshed as a result of an external property change.

In order to register your own configuration class, create a file named

<component>/src/main/resources/META-
INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports

with content

org.apache.syncope.custom.config.SomethingConfiguration

What if you needed to override the definition of a Syncope-provided bean and replace it entirely
with your own?
Most component/bean definitions are registered with some form of @Conditional tag that indicates
to the bootstrapping process to ignore their creation, if a bean definition with the same id is already
defined. This means you can create your own configuration class, register it and the design a @Bean
definition only to have the context utilize yours rather than what ships with Syncope by default.

98

Bean Names

To correctly define a conditional Bean, you generally need to make sure your own
bean definition is created using the same name or identifier as its original
equivalent. It is impractical and certainly overwheling to document all runtime
bean definitions and their identifiers. So, you will need to study the Syncope
codebase to find the correct onfiguration classes and bean defnitions to note their
name.

Deployment directories

Apache Syncope needs three base directories to be defined:

• bundles - where the connector bundles are stored;

• log - where all the system logs are written;

• conf - where configuration files are located.

The bundles directory should only contain connector bundle JAR files.
The presence of any other file might cause the unavailability of any connector
bundle in Apache Syncope.

For reference, the suggested directory layout can be created as follows:

$ mkdir /opt/syncope
$ mkdir /opt/syncope/bundles
$ mkdir /opt/syncope/log
$ mkdir /opt/syncope/conf

The conf directory must be configured for deployment, following Spring Boot’s
Externalized Configuration settings; with above reference:

• Standalone: --spring.config.additional-location=/opt/syncope/conf/

• JavaEE Container: -Dspring.config.additional-location=/opt/syncope/conf/

4.5.2. Core

When providing custom Java classes implementing the defined interfaces or
extending the existing implementations, their package must be rooted under
org.apache.syncope.core, otherwise they will not be available at runtime.

Besides replacing existing classes as explained above, new implementations can be provided - in
the source tree under core/src/main/java when Java or via REST services if Groovy - for the
following components:

• propagation, push, pull and logic actions

• push / pull correlation rules

99

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#features.external-config.files

• reconciliation filter builders

• commands

• macros

• scheduled tasks

• reports

• account and password rules for policies

• plain schema validators

• mapping item transformers

• workflow adapters

• provisioning managers

• notification recipient providers

• JWT SSO providers

• audit event processors

Customize OpenJPA settings

Apache OpenJPA is at the core of the persistence layer; its configuration can be tweaked under
several aspects - including caching for example, to best suit the various environments.

The main configuration classes are:

• PersistenceContext

• MasterDomain

• DomainConfFactory

The @Bean declarations from these classes can be customized as explained above.

Enable the Flowable User Workflow Adapter

Add the following dependency to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.flowable</groupId>
 <artifactId>syncope-ext-flowable-rest-cxf</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the SAML 2.0 Service Provider for UI extension

Add the following dependencies to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.saml2sp4ui</groupId>

100

https://openjpa.apache.org/builds/3.2.2/apache-openjpa/docs/ref_guide_caching.html
https://github.com/apache/syncope/blob/master/core/persistence-jpa/src/main/java/org/apache/syncope/core/persistence/jpa/PersistenceContext.java
https://github.com/apache/syncope/blob/master/core/persistence-jpa/src/main/java/org/apache/syncope/core/persistence/jpa/MasterDomain.java
https://github.com/apache/syncope/blob/master/core/persistence-jpa/src/main/java/org/apache/syncope/core/persistence/jpa/DomainConfFactory.java

 <artifactId>syncope-ext-saml2sp4ui-rest-cxf</artifactId>
 <version>${syncope.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.syncope.ext.saml2sp4ui</groupId>
 <artifactId>syncope-ext-saml2sp4ui-persistence-jpa</artifactId>
 <version>${syncope.version}</version>
</dependency>

Setup a keystore and place it under the configuration directory, then take the properties from
core/src/test/resources/core-all.properties into your configuration and review accordingly.

Enable the OpenID Connect Client for UI extension

Add the following dependencies to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.oidcc4ui</groupId>
 <artifactId>syncope-ext-oidcc4ui-rest-cxf</artifactId>
 <version>${syncope.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.syncope.ext.oidcc4ui</groupId>
 <artifactId>syncope-ext-oidcc4ui-persistence-jpa</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the Elasticsearch extension

Add the following dependencies to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.elasticsearch</groupId>
 <artifactId>syncope-ext-elasticsearch-provisioning-java</artifactId>
 <version>${syncope.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.syncope.ext.elasticsearch</groupId>
 <artifactId>syncope-ext-elasticsearch-persistence</artifactId>
 <version>${syncope.version}</version>
</dependency>

Create

elasticsearch.hosts[0]=http://localhost:9200
elasticsearch.indexMaxResultWindow=10000
elasticsearch.numberOfShards=1

101

elasticsearch.numberOfReplicas=1

as core/src/main/resources/core-elasticsearch.properties.

Do not forget to include elasticsearch as Spring Boot profile for the Core application.

If needed, customize the @Bean declarations from ElasticsearchClientContext as explained above.

It is also required to initialize the Elasticsearch indexes: add a new Java implementation for
TASKJOB_DELEGATE and use org.apache.syncope.core.provisioning.java.job.ElasticsearchReindex as
class.
Then, create a new scheduled task, select the implementation just created as job delegate and
execute it.

The org.apache.syncope.core.provisioning.java.job.ElasticsearchReindex task
created above is not meant for scheduled execution; rather, it can be run every
time you want to blank and re-create the Elasticsearch indexes starting from
Syncope’s internal storage.

Enable the OpenSearch extension

Add the following dependencies to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.opensearch</groupId>
 <artifactId>syncope-ext-opensearch-provisioning-java</artifactId>
 <version>${syncope.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.syncope.ext.opensearch</groupId>
 <artifactId>syncope-ext-opensearch-persistence</artifactId>
 <version>${syncope.version}</version>
</dependency>

Create

opensearch.hosts[0]=http://localhost:9200
opensearch.indexMaxResultWindow=10000
opensearch.numberOfShards=1
opensearch.numberOfReplicas=1

as core/src/main/resources/core-opensearch.properties.

Do not forget to include opensearch as Spring Boot profile for the Core application.

If needed, customize the @Bean declarations from OpenSearchClientContext as explained above.

It is also required to initialize the OpenSearch indexes: add a new Java implementation for

102

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://github.com/apache/syncope/blob/master/ext/elasticsearch/client-elasticsearch/src/main/java/org/apache/syncope/ext/elasticsearch/client/ElasticsearchClientContext.java
https://docs.spring.io/spring-boot/docs/2.7.x/reference/html/features.html#features.profiles.adding-active-profiles
https://github.com/apache/syncope/blob/master/ext/opensearch/client-opensearch/src/main/java/org/apache/syncope/ext/opensearch/client/OpenSearchClientContext.java

TASKJOB_DELEGATE and use org.apache.syncope.core.provisioning.java.job.OpenSearchReindex as
class.
Then, create a new scheduled task, select the implementation just created as job delegate and
execute it.

The org.apache.syncope.core.provisioning.java.job.OpenSearchReindex task
created above is not meant for scheduled execution; rather, it can be run every
time you want to blank and re-create the OpenSearch indexes starting from
Syncope’s internal storage.

Enable the SCIM extension

Add the following dependencies to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.scimv2</groupId>
 <artifactId>syncope-ext-scimv2-rest-cxf</artifactId>
 <version>${syncope.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.syncope.ext.scimv2</groupId>
 <artifactId>syncope-ext-scimv2-scim-rest-cxf</artifactId>
 <version>${syncope.version}</version>
</dependency>

New REST endpoints

Adding a new REST endpoint involves several operations:

1. create - in an extension’s rest-api module or under common otherwise - a Java interface with
package org.apache.syncope.common.rest.api.service and proper JAX-RS annotations; check
BpmnProcessService for reference;

2. if needed, define supporting payload objects - in an extension’s common-lib module or under
common otherwise; check BpmnProcess for reference;

3. implement - in an extension’s rest-cxf module or under core otherwise - the interface defined
above in a Java class with package org.apache.syncope.core.rest.cxf.service; check
BpmnProcessServiceImpl for reference.

By following such conventions, the new REST endpoint will be automatically picked up alongside
the default services.

4.5.3. Console

When providing custom Java classes implementing the defined interfaces or
extending the existing implementations, their package must be rooted under
org.apache.syncope.client.console, otherwise they will not be available at
runtime.

103

https://github.com/apache/syncope/blob/master/ext/flowable/rest-api/src/main/java/org/apache/syncope/common/rest/api/service/BpmnProcessService.java
https://github.com/apache/syncope/blob/master/ext/flowable/common-lib/src/main/java/org/apache/syncope/common/lib/to/BpmnProcess.java
https://github.com/apache/syncope/blob/master/ext/flowable/rest-cxf/src/main/java/org/apache/syncope/core/rest/cxf/service/BpmnProcessServiceImpl.java

Enable the Flowable User Workflow Adapter

Add the following dependency to console/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.flowable</groupId>
 <artifactId>syncope-ext-flowable-client-console</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the SAML 2.0 Service Provider for UI extension

Add the following dependencies to console/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.saml2sp4ui</groupId>
 <artifactId>syncope-ext-saml2sp4ui-client-console</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the OpenID Connect Client for UI extension

Add the following dependencies to console/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.oidcc4ui</groupId>
 <artifactId>syncope-ext-oidcc4ui-client-console</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the SCIM extension

Add the following dependencies to console/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.scimv2</groupId>
 <artifactId>syncope-ext-scimv2-client-console</artifactId>
 <version>${syncope.version}</version>
</dependency>

4.5.4. Enduser

When providing custom Java classes implementing the defined interfaces or
extending the existing implementations, their package must be rooted under
org.apache.syncope.client.enduser, otherwise they will not be available at

104

runtime.

Enable the Flowable User Workflow Adapter

Add the following dependency to enduser/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.flowable</groupId>
 <artifactId>syncope-ext-flowable-client-enduser</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the SAML 2.0 Service Provider for UI extension

Add the following dependencies to enduser/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.saml2sp4ui</groupId>
 <artifactId>syncope-ext-saml2sp4ui-client-enduser</artifactId>
 <version>${syncope.version}</version>
</dependency>

Enable the OpenID Connect Client for UI extension

Add the following dependencies to enduser/pom.xml:

<dependency>
 <groupId>org.apache.syncope.ext.oidcc4ui</groupId>
 <artifactId>syncope-ext-oidcc4ui-client-enduser</artifactId>
 <version>${syncope.version}</version>
</dependency>

Form customization

The Enduser Application allows to customize the form in order to:

• hide / show attributes

• set attributes read-only for users

• provide default value(s)

Under the enduser/src/main/resources directory, the customFormLayout.json file is available, allowing
to configure form customization.

4.5.5. WA

 When providing custom Java classes implementing the defined interfaces or

105

extending the existing implementations, their package must be rooted under
org.apache.syncope.wa, otherwise they will not be available at runtime.

4.5.6. SRA

When providing custom Java classes implementing the defined interfaces or
extending the existing implementations, their package must be rooted under
org.apache.syncope.sra, otherwise they will not be available at runtime.

4.5.7. Extensions

Extensions can be part of a local project, to encapsulate special features which are specific to a
given deployment.

For example, the CHOReVOLUTION IdM - based on Apache Syncope - provides an extension for
managing via the Core and visualizing via the Admin UI the running choreography instances.

4.6. Actuator Endpoints
Spring Boot’s actuator endpoints let you monitor and interact with Syncope components.

Each individual endpoint can be enabled / disabled and exposed over HTTP (pre-defined, under the
/actuator subcontext) or JMX.

Besides a number of built-in endpoints, more are made available for each component, as reported
below.

The pre-defined health and info endpoints are extended by each Syncope
component, to add sensible data for the given component.

The pre-defined health endpoint is typically used for liveness and readiness
probes, even with Kubernetes.

4.6.1. Core

entityCache Allows to work with JPA cache statistics

• GET - shows JPA cache statistics

• POST {ENABLE,DISABLE,RESET} - performs the requested
operation onto JPA cache

• DELETE - clears JPA cache’s current content

4.6.2. WA

ssoSessions More details

106

http://www.chorevolution.eu/
https://gitlab.ow2.org/chorevolution/syncope/tree/master/ext/choreography
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#actuator.endpoints
https://openjpa.apache.org/builds/3.2.2/apache-openjpa/docs/#ref_guide_cache_statistics
https://apereo.github.io/cas/6.6.x/authentication/Configuring-SSO.html#actuator-endpoints

registeredServices More details

authenticationHandlers More details

authenticationPolicies More details

resolveAttributes More details

4.6.3. SRA

sraSessions • GET - lists the current sessions

• GET {id} - reads the session with given id

• DELETE {id} - removes the session with given id

gateway More details

107

https://apereo.github.io/cas/6.6.x/services/Service-Management.html#actuator-endpoints
https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Components.html#actuator-endpoints
https://apereo.github.io/cas/6.6.x/authentication/Configuring-Authentication-Policy.html#actuator-endpoints
https://apereo.github.io/cas/6.6.x/integration/Attribute-Resolution.html#actuator-endpoints
https://docs.spring.io/spring-cloud-gateway/docs/3.1.x/reference/html/#actuator-api

Chapter 5. Configuration

Where are the configuration files?

Depending on which Apache Syncope distribution you are running, the configuration files
mentioned in the following text might reside in different locations.

Standalone

Assuming that $CATALINA_HOME is the Apache Tomcat base directory created when the
distribution archive was unzipped, the configuration files are located under

• $CATALINA_HOME/webapps/syncope/WEB-INF/classes/

• $CATALINA_HOME/webapps/syncope-console/WEB-INF/classes/

• $CATALINA_HOME/webapps/syncope-enduser/WEB-INF/classes/

• $CATALINA_HOME/webapps/syncope-wa/WEB-INF/classes/

Maven project

Assuming that $CONF_DIRECTORY is the directory passed among deployment directories at
build time and that $SOURCE is the path where the Maven project was generated, the
configuration files will be first searched in $CONF_DIRECTORY, then under the selected
deployment’s application classpath, according to the content of

• $SOURCE/core/target/classes/

• $SOURCE/console/target/classes/

• $SOURCE/enduser/target/classes/

• $SOURCE/wa/target/classes/

• $SOURCE/sra/target/classes/

5.1. Deployment
Apache Syncope components are built on Spring Boot, hence components can be generally
deployed either as standalone applications or into one of the supported Java EE containers.

The only exception is Secure Remote Access that, being based on Spring Cloud
Gateway - which in turn is built on Spring WebFlux and Project Reactor, is only
available as standalone application.

For all components, please ensure to reference the proper Keymaster instance by
including the following properties:

keymaster.address=<KEYMASTER_ADDRESS>
keymaster.username=${anonymousUser}

108

https://spring.io/projects/spring-boot
https://docs.spring.io/spring-framework/docs/5.3.x/reference/html/web-reactive.html
https://projectreactor.io/docs

keymaster.password=${anonymousKey}

where <KEYMASTER_ADDRESS> can be either:

• protocol://host:port/syncope/rest/keymaster pointing to the Core instance, in
case of Self Keymaster;

• host:port (typically host:2181) in case Apache Zookeeper is used.

5.1.1. Standalone

Projects generated from Maven archetype feature a dedicated standalone profile, which will re-
package all applications as standalone fat JAR or WAR files.

 Spring Boot applications can also be installed as system services.

Example 35. Run Core application as standalone under GNU / Linux

Assuming that the JDBC driver JAR file for the configured DBMS is available under
/opt/syncope/lib, the Core application can be built and run as follows:

$ mvn -P standalone clean verify
$ cp core/target/syncope.war /opt/syncope/lib
$ cp core/target/classes/*properties /opt/syncope/conf

$ export LOADER_PATH=/opt/syncope/conf,/opt/syncope/lib,BOOT-INF/classes/WEB-
INF/classes
$ java -Dsyncope.conf.dir=/opt/syncope/conf \
 -Dsyncope.connid.location=file:/opt/syncope/bundles \
 -Dsyncope.log.dir=/opt/syncope/log \
 -jar /opt/syncope/lib/syncope.war

Further options can be passed to last command, according to Spring Boot documentation; for
example:

• --spring.config.additional-location=/path
to customize the location of the configuration files

• --server.port=8080
to change the default HTTP port

5.1.2. JavaEE Container

Deployment into the Java EE containers listed below might require Maven project changes or
tweaking some configuration settings.

109

https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#deployment.installing
https://docs.spring.io/spring-boot/docs/current/reference/html/application-properties.html#appendix.application-properties

Database Connection Pool

The internal storage is the central place where all data of a given Core deployment are
located.

After choosing the appropriate DBMS, it is of fundamental importance to provide an
adequate configuration for the related database connection pool.

The database connection pool can be:

1. Application-managed (default); based on HikariCP, the related parameters can be tuned in
the related domain configuration file, e.g. domains/Master.properties, for the Master
domain.

2. JavaEE Container-managed, via the JNDI resource matching the name specified for a
given domain, e.g. java:comp/env/jdbc/syncopeMasterDataSource for the Master domain.
Each JavaEE Container provides its own way to accomplish this task:

◦ Apache Tomcat 10

◦ Payara Server 6

◦ Wildfly 32

5.1.3. Apache Tomcat 10

On GNU / Linux - Mac OS X, create $CATALINA_HOME/bin/setenv.sh with similar content (keep
everything on a single line):

JAVA_OPTS="-Djava.awt.headless=true -Dfile.encoding=UTF-8 -server \
-Dsyncope.conf.dir=/opt/syncope/conf \
-Dsyncope.connid.location=file:/opt/syncope/bundles \
-Dsyncope.log.dir=/opt/syncope/log \
-Xms1536m -Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+DisableExplicitGC \
-Djava.security.egd=file:/dev/./urandom"

On MS Windows, create %CATALINA_HOME%\bin\setenv.bat with similar content (keep everything on a
single line):

set JAVA_OPTS=-Djava.awt.headless=true -Dfile.encoding=UTF-8 -server \
-Dsyncope.conf.dir=C:\opt\syncope\conf \
-Dsyncope.connid.location=file:/C:\opt\syncope\bundles \
-Dsyncope.log.dir=C:\opt\syncope\log \
-Xms1536m -Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+DisableExplicitGC

5.1.4. Payara Server 6

Add

110

https://en.wikipedia.org/wiki/Connection_pool
http://brettwooldridge.github.io/HikariCP/
https://tomcat.apache.org/tomcat-10.0-doc/jdbc-pool.html
https://docs.payara.fish/community/docs/Technical%20Documentation/Payara%20Server%20Documentation/Server%20Configuration%20And%20Management/JDBC%20Resource%20Management/JDBC.html
https://docs.wildfly.org/32/Admin_Guide.html#DataSource

 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>jakarta.faces</artifactId>
 <version>${jakarta.faces.version}</version>
 </dependency>

to core/pom.xml, console/pom.xml, enduser/pom.xml and wa/pom.xml,

then replace

 <dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-persistence-jpa</artifactId>
 </dependency>

with

 <dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-persistence-jpa</artifactId>
 </dependency>

in core/pom.xml.

When using a datasource for internal storage, be sure to add

<resource-ref>
 <res-ref-name>jdbc/syncopeMasterDataSource</res-ref-name>
 <jndi-name>jdbc/syncopeMasterDataSource</jndi-name>
</resource-ref>

right after </context-root> in core/src/main/webapp/WEB-INF/glassfish-web.xml, assuming that your
Payara Server instance provides a datasource named jdbc/syncopeMasterDataSource.

Do not forget to include the following system properties:

• -Dsyncope.conf.dir=/opt/syncope/conf
(required by Core and WA)

• -Dsyncope.connid.location=file:/opt/syncope/bundles
(required by Core)

• -Dsyncope.log.dir=/opt/syncope/log
(required by all components)

For better performance under GNU / Linux, do not forget to include the system

111

property:

-Djava.security.egd=file:/dev/./urandom

5.1.5. Wildfly 32

Add

 <dependency>
 <groupId>jakarta.xml.ws</groupId>
 <artifactId>jakarta.xml.ws-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-core</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-ws-policy</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-wsdl</artifactId>
 <version>${cxf.version}</version>
 </dependency>

as additional dependencies in core/pom.xml, console/pom.xml, enduser/pom.xml and wa/pom.xml,

then replace

 <dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-starter</artifactId>
 </dependency>

with

 <dependency>
 <groupId>org.apache.syncope.core</groupId>

112

 <artifactId>syncope-core-starter</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.apache.tomcat.embed</groupId>
 <artifactId>tomcat-embed-el</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

in core/pom.xml.

Finally, create

persistence.metaDataFactory=jpa(URLs=\
vfs:/content/${project.build.finalName}.war/WEB-INF/lib/syncope-core-persistence-jpa-
${syncope.version}.jar; \
vfs:/content/${project.build.finalName}.war/WEB-INF/lib/syncope-core-self-keymaster-
starter-${syncope.version}.jar, \
Resources=##orm##)

javadocPaths=/WEB-INF/lib/syncope-common-idrepo-rest-api-${syncope.version}-
javadoc.jar,\
/WEB-INF/lib/syncope-common-idm-rest-api-${syncope.version}-javadoc.jar,\
/WEB-INF/lib/syncope-common-am-rest-api-${syncope.version}-javadoc.jar

as core/src/main/resources/core-wildfy.properties.

Do not forget to include widlfly as Spring Boot profile for the Core application.

Do not forget to include the following system properties:

• -Dsyncope.conf.dir=/opt/syncope/conf
(required by Core and WA)

• -Dsyncope.connid.location=file:/opt/syncope/bundles
(required by Core)

• -Dsyncope.log.dir=/opt/syncope/log
(required by all components)

For better performance under GNU / Linux, do not forget to include the system
property:

-Djava.security.egd=file:/dev/./urandom

113

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles

5.2. DBMS

5.2.1. PostgreSQL

Apache Syncope 4.0.0-SNAPSHOT is verified with PostgreSQL server >= 16 and
JDBC driver >= 42.7.3.

Create

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=org.postgresql.Driver
persistence.domain[0].jdbcURL=jdbc:postgresql://localhost:5432/syncope?stringtype=unsp
ecified
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.PostgresDictionary
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-postgres.properties.

Do not forget to include postgres as Spring Boot profile for the Core application.

This assumes that you have a PostgreSQL instance running on localhost, listening
on its default port 5432 with a database syncope fully accessible by user syncope
with password syncope.

5.2.2. PostgreSQL (JSONB)

With the configurations reported below, Apache Syncope will leverage the JSONB
column type for attribute storage.

Apache Syncope 4.0.0-SNAPSHOT is verified with PostgreSQL server >= 16 and
JDBC driver >= 42.7.3.

Add the following dependency to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-persistence-jpa-json</artifactId>
 <version>${syncope.version}</version>
</dependency>

Create

114

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://www.postgresql.org/docs/current/datatype-json.html

persistence.indexesXML=classpath:pgjsonb/indexes.xml
persistence.viewsXML=classpath:pgjsonb/views.xml

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=org.postgresql.Driver
persistence.domain[0].jdbcURL=jdbc:postgresql://${DB_CONTAINER_IP}:5432/syncope?string
type=unspecified
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.PostgresDictionary
persistence.domain[0].orm=META-INF/spring-orm-pgjsonb.xml
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-pgjsonb.properties.

Do not forget to include pgjsonb as Spring Boot profile for the Core application.

This assumes that you have a PostgreSQL instance running on localhost, listening
on its default port 5432 with a database syncope fully accessible by user syncope
with password syncope.

5.2.3. MySQL

Apache Syncope 4.0.0-SNAPSHOT is verified with MySQL server >= 8.0 and JDBC
driver >= 8.3.0.

Create

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=com.mysql.cj.jdbc.Driver
persistence.domain[0].jdbcURL=jdbc:mysql://localhost:3306/syncope?useSSL=false&allowPu
blicKeyRetrieval=true&characterEncoding=UTF-8
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.MySQLDictionary(blo
bTypeName=LONGBLOB,dateFractionDigits=3,useSetStringForClobs=true)
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-mysql.properties.

Do not forget to include mysql as Spring Boot profile for the Core application.

It is important to set the collation to utf8_general_ci after creation of syncope
database.

115

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles

This assumes that you have a MySQL instance running on localhost, listening on its
default port 3306 with a database syncope fully accessible by user syncope with
password syncope.

5.2.4. MySQL (JSON)

With the configurations reported below, Apache Syncope will leverage the
JSON_TABLE function.

Apache Syncope 4.0.0-SNAPSHOT is verified with MySQL server >= 8.0 and JDBC
driver >= 8.3.0.

Add the following dependency to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-persistence-jpa-json</artifactId>
 <version>${syncope.version}</version>
</dependency>

Create

persistence.indexesXML=classpath:myjson/indexes.xml
persistence.viewsXML=classpath:myjson/views.xml

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=com.mysql.cj.jdbc.Driver
persistence.domain[0].jdbcURL=jdbc:mysql://localhost:3306/syncope?useSSL=false&allowPu
blicKeyRetrieval=true&characterEncoding=UTF-8
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.MySQLDictionary(blo
bTypeName=LONGBLOB,dateFractionDigits=3,useSetStringForClobs=true)
persistence.domain[0].orm=META-INF/spring-orm-myjson.xml
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-myjson.properties.

Do not forget to include myjson as Spring Boot profile for the Core application.

 This assumes that the InnoDB engine is enabled in your MySQL instance.

It is important to set the collation to utf8_general_ci after creation of syncope
database.

116

https://dev.mysql.com/doc/refman/8.0/en/json-table-functions.html
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles

This assumes that you have a MySQL instance running on localhost, listening on its
default port 3306 with a database syncope fully accessible by user syncope with
password syncope.

5.2.5. MariaDB

Apache Syncope 4.0.0-SNAPSHOT is verified with MariaDB server >= 11 and JDBC
driver >= 3.3.3.

Create

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=org.mariadb.jdbc.Driver
persistence.domain[0].jdbcURL=jdbc:mariadb://localhost:3306/syncope?characterEncoding=
UTF-8
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.MariaDBDictionary(b
lobTypeName=LONGBLOB,dateFractionDigits=3,useSetStringForClobs=true)
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-mariadb.properties.

Do not forget to include mariadb as Spring Boot profile for the Core application.

It is important to set the collation to utf8_general_ci after creation of syncope
database.

It is necessary to use utf8mb4_unicode_ci instead of utf8mb4_general_ci if case-
sensitive queries are required. In this case, set

init_connect = "SET NAMES utf8mb4 COLLATE utf8mb4_unicode_ci"

under either the [mysqld] section or the [mariadb] section of your option file.

This assumes that you have a MariaDB instance running on localhost, listening on
its default port 3306 with a database syncope fully accessible by user syncope with
password syncope.

5.2.6. Oracle Database

Apache Syncope 4.0.0-SNAPSHOT is verified with Oracle database >= 19c and JDBC
driver >= ojdbc11 23.3.0.23.09.

117

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://mariadb.com/kb/en/configuring-mariadb-with-option-files/

Create

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=oracle.jdbc.OracleDriver
persistence.domain[0].jdbcURL=jdbc:oracle:thin:@localhost:1521:XE
persistence.domain[0].schema=SYNCOPE
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.OracleDictionary
persistence.domain[0].orm=META-INF/spring-orm-oracle.xml
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

persistence.indexesXML=classpath:oracle_indexes.xml

as core/src/main/resources/core-oracle.properties.

Do not forget to include oracle as Spring Boot profile for the Core application.

This assumes that you have an Oracle instance running on localhost, listening on
its default port 1521 with a database syncope under tablespace SYNCOPE, fully
accessible by user syncope with password syncope.

5.2.7. Oracle Database (JSON)

With the configurations reported below, Apache Syncope will leverage the JSON
features.

Apache Syncope 4.0.0-SNAPSHOT is verified with Oracle database >= 19c and JDBC
driver >= ojdbc11 23.3.0.23.09.

Add the following dependency to core/pom.xml:

<dependency>
 <groupId>org.apache.syncope.core</groupId>
 <artifactId>syncope-core-persistence-jpa-json</artifactId>
 <version>${syncope.version}</version>
</dependency>

Create

persistence.indexesXML=classpath:ojson/indexes.xml
persistence.viewsXML=classpath:ojson/views.xml

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=oracle.jdbc.OracleDriver

118

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://docs.oracle.com/en/database/oracle/oracle-database/19/adjsn/

persistence.domain[0].jdbcURL=jdbc:postgresql://${DB_CONTAINER_IP}:5432/syncope?string
type=unspecified
persistence.domain[0].schema=SYNCOPE
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=syncope
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.OracleDictionary
persistence.domain[0].orm=META-INF/spring-orm-ojson.xml
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

as core/src/main/resources/core-ojson.properties.

Do not forget to include ojson as Spring Boot profile for the Core application.

This assumes that you have an Oracle instance running on localhost, listening on
its default port 1521 with a database syncope under tablespace SYNCOPE, fully
accessible by user syncope with password syncope.

5.2.8. MS SQL Server

Apache Syncope 4.0.0-SNAPSHOT is verified with MS SQL server >= 2017 and JDBC
driver >= 12.6.1.jre1111.

Create

persistence.domain[0].key=Master
persistence.domain[0].jdbcDriver=com.microsoft.sqlserver.jdbc.SQLServerDriver
persistence.domain[0].jdbcURL=jdbc:sqlserver://localhost:1433;databaseName=syncope
persistence.domain[0].schema=dbo
persistence.domain[0].dbUsername=syncope
persistence.domain[0].dbPassword=Syncope123
persistence.domain[0].databasePlatform=org.apache.openjpa.jdbc.sql.SQLServerDictionary
persistence.domain[0].orm=META-INF/spring-orm-sqlserver.xml
persistence.domain[0].poolMaxActive=20
persistence.domain[0].poolMinIdle=5

persistence.viewsXML=classpath:sqlserver_views.xml

as core/src/main/resources/core-sqlserver.properties.

Do not forget to include sqlserver as Spring Boot profile for the Core application.

This assumes that you have a MS SQL Server instance running on localhost,
listening on its default port 1433 with a database syncope fully accessible by user
syncope with password syncope.

119

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles.adding-active-profiles

5.3. High-Availability

OpenJPA

When deploying multiple Syncope Core instances with a single database or database cluster, it is of
fundamental importance that the contained OpenJPA instances are correctly configured for remote
event notification.
Such configuration, in fact, allows the OpenJPA data cache to remain synchronized when deployed
in multiple JVMs, thus enforcing data consistency across all Syncope Core instances.

The default configuration in core.properties is

persistence.remoteCommitProvider=sjvm

which is suited for single JVM installations; with multiple instances, more options like as TCP or JMS
are available; see the OpenJPA documentation for reference.

The OpenJPA documentation's XML snippets refer to a different configuration
style; for example, when used in core.properties, this:

<property name="openjpa.RemoteCommitProvider"
value="tcp(Addresses=10.0.1.10;10.0.1.11,TransmitPersistedObjectIds=tru
e)"/>

becomes:

persistence.remoteCommitProvider=tcp(Addresses=10.0.1.10;10.0.1.11,Tran
smitPersistedObjectIds=true)

5.4. Domains Management
Besides the pre-defined Master domain, other Domains are bootstrapped during Core startup from
three files in the configuration directory; assuming that the domain name is Two, such files are:

• domains/TwoSecurity.json - admin credentials;

• domains/TwoKeymasterConfParams.json - for Keymaster initialization;

• domains/TwoContent.xml - for content initialization.

Starting from Syncope 3.0 it is also possible to create, update and delete Domains
at runtime by managing the related configuration on the configured Keymaster
instance.

120

https://openjpa.apache.org/builds/3.2.2/apache-openjpa/docs/ref_guide_event.html
https://openjpa.apache.org/builds/3.2.2/apache-openjpa/docs/ref_guide_event.html
https://openjpa.apache.org/builds/3.2.2/apache-openjpa/docs/ref_guide_event.html

5.5. ConnId locations
Core can be configured to use either local or remote connector bundles:

• local connector bundles are located somewhere in the same filesystem where Apache Syncope
is deployed;

• remote connector bundles are provided via Java or .NET connector server.

While local connector bundles feature an easy setup, remote connector bundles allow enhanced
deployment scenarios and are particularly useful when it is needed to deal with architectural
security constraints or when a connector bundle requires to run on a specific platform OS (say MS
Windows) while Apache Syncope is deployed on another platform OS (say GNU/Linux).

The core.properties file holds the configuration for defining which ConnId locations (either local or
remote) will be considered.

The format is quite straightforward:

provisioning.connIdLocation=location1,\
location2,\
...
locationN

where each location is the string representation of an URI of the form file:/path/to/directory/ for
local locations, connid://key@host:port for remote non-SSL connector servers or finally
connids://key@host:port[?trustAllcerts=true] for remote SSL connector servers, with optional flag
to disable certificate check.

Example 36. Single local location

provisioning.connIdLocation=file:/opt/syncope/bundles/

Example 37. Single remote location

provisioning.connIdLocation=connid://sampleKey@windows2008:4554

Example 38. Multiple locations

provisioning.connIdLocation=file:/opt/syncope/bundles/,\
file:/var/tmp/bundles/,\
connid://sampleKey@windows2008:4554,\
connids://anotherKey@windows2008:4559,\
connids://aThirdKey@linuxbox:9001?trustAllCerts=true

121

https://connid.atlassian.net/wiki/display/BASE/Connector+Servers

5.6. Install connector bundles
Connector bundles are made available as JAR files and can be configured, for a given deployment:

• for Maven project, in local sources;

• for all distributions, at run-time.

5.6.1. Local sources

Different version of predefined connector bundle

First of all, verify which connector bundles are predefined in your project by looking at your
project’s parent POM.

As you can see, there are several Maven properties on the form connid.*.version, controlling the
related connector bundle’s version.

If you want your own project to use a different version of a given connector bundle, all you need to
do is to override the related property in your own project’s root pom.xml.

Hence, supposing that you would like to use net.tirasa.connid.bundles.db version 3.0.0-SNAPSHOT
rather than the one with version shipped with Apache Syncope, add the following property to your
own project’s root pom.xml:

<properties>
 ...
 <connid.db.version>3.0.0-SNAPSHOT</connid.db.version>
</properties>

Non-predefined connector bundle

If the needed connector bundle is not in the predefined set as shown above, you will need to add a
new property into your own project’s root pom.xml:

<properties>
 ...
 <my.new.connector.version>1.0.0</my.new.connector.version>
</properties>

then change the maven-dependency-plugin configuration both in core/pom.xml and console/pom.xml
from

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <inherited>true</inherited>
 <executions>

122

https://repository.apache.org/content/groups/snapshots/org/apache/syncope/syncope/4.0.0-SNAPSHOT

 <execution>
 <id>set-bundles</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 </execution>
 </executions>
</plugin>

to

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>my.new.connector.groupId</groupId>
 <artifactId>my.new.connector.artifactId</artifactId>
 <version>${my.new.connector.version}</version>
 <classifier>bundle</classifier>
 </artifactItem>
 </artifactItems>
 </configuration>
 <executions>
 <execution>
 <id>set-bundles</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 </execution>
 </executions>
</plugin>

5.6.2. Run-time

Connector bundles can be added or replaced at run-time by performing the following steps:

1. Download the required connector bundle JAR file;

2. Copy the downloaded JAR file into one of configured ConnId locations, typically the bundles
directory where the other connector bundles are already available.

5.7. E-mail Configuration
The core.properties file holds the configuration options to enable the effective delivery of

123

https://github.com/Tirasa/ConnId/#available-connectors

notification e-mails:

• spring.mail.host - the mail server host, typically an SMTP host;

• spring.mail.port - the mail server port;

• spring.mail.username - (optional) the username for the account at the mail host;

• spring.mail.password - (optional) the password for the account at the mail host;

• spring.mail.properties.mail.smtp.auth - when true, the configured username and password are
sent to SMTP server;

• spring.mail.properties.mail.smtp.starttls.enable - when true, enable the use of the STARTTLS
command to switch the connection to a TLS-protected connection before issuing any login
commands;

All the JavaMail™ properties are available for usage with prefix spring.mail.properties..

Example 39. Basic configuration, no authentication

spring.mail.host=your.local.smtp.server
spring.mail.port=25
spring.mail.username=
spring.mail.password=
spring.mail.properties.mail.smtp.auth=false
spring.mail.properties.mail.smtp.starttls.enable=false

Example 40. STARTTLS configuration, with authentication

spring.mail.host=smtp.gmail.com
spring.mail.port=587
spring.mail.username=your_username@gmail.com
spring.mail.password=your_password
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

In order to make the changes to core.properties effective, the deployment needs to
be restarted.

Be sure to provide a sensible value for the notificationjob.cronExpression
configuration parameter, otherwise the notification tasks will not be triggered; see
below for details.

5.8. Control JWT signature
As explained above, the REST authentication process generates, in case of success, a unique signed

124

https://javaee.github.io/javamail/docs/api/com/sun/mail/smtp/package-summary.html#properties

JWT (JSON Web Token).
Such JWT values are signed by Apache Syncope according to the JWS (JSON Web Signature)
specification.

5.8.1. Hash-based Message Authentication Code

This is the default configuration, where Core and clients posses a shared secret, configured under
core.properties as the jwsKey property value.

Example 41. Default JWS configuration

security.jwsAlgorithm=HS512 ①
security.jwsKey=ZW7pRixehFuNUtnY5Se47IemgMryTzazPPJ9CGX5LTCmsOJpOgHAQEuPQeV9A28f
②

① Valid values are HS256, HS384 and HS512

② Any alphanumeric value satisfying the length requirement can be used

5.8.2. RSA Public-Key Cryptography

This configuration requires to specify a key pair: the former key value, said private, must be kept
secret for internal Core usage while the latter key value, said public, is to be shared with clients.

The commands below will generate the required key pair via OpenSSL and format their values for
usage with core.properties:

$ openssl genrsa -out private_key.pem 2048
$ openssl pkcs8 -topk8 -in private_key.pem -inform pem -out jws.privateKey -outform
pem -nocrypt
$ openssl rsa -pubout -in private_key.pem -out jws.publicKey
$ echo `sed '1d;$d' jws.privateKey | awk '{printf "%s", $0}'`:`sed '1d;$d'
jws.publicKey | awk '{printf "%s", $0}'`

Example 42. JWS configuration with RSA PKCS#1

security.jwsAlgorithm=RS512 ①
security.jwsKey=MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCdXTaAPRoIAvWjm5
MskNtcGakkME4HEhZ8oQ2J8XNU29ZT7Qq5TP769/O8OH5Pb56mPULswYSocycrAARPzjAKpxr+YN7w2/zo
5MsBRZsASgpCxnCeYLCWtJzmzY/YYlAHdsu3jj/4wuAcYozR1xE5e2gEj0BQ6Xz7NELhceEZpbXIeKSDol
LdCKrVZ1vdD0q/HdjY2qeBACqeG8yYXsj2MiAMJY6df80ZCqpHkcD9mhfzqUo5EcWCD7XzcOJQRNUKkBEO
bemq//tt5NHFbWnBeGeTJBcyXV7Uqqbjnd6hwBBS1d6usAagGQ4RWDHPBMk02BdEFyrZjgJXM1C1iU/9Ag
MBAAECggEBAJpbnaNKzCcBqCuU5ld3vARqk1QRIeijoHUdkWc29TdO8LygLr22vgI1h9qf255V0dwlCWmt
JVAKrGfse05A5TT912egY+8FCt7z1gFoYnN1LP11I3DnTTB299UZ3DiXrwKzT368xRlhJm4RaSpIePfWii
C215LGhTbve48iongBXzkpzFYe1SCV1FmNl5Px6FE3C9GcTrFpe+rqVcIVrTLZ95+JDF4/YLgTRccW8V/Y
O+4OtqUo+vt8tckDGhrHrfwgTo53kxDQttecB4AryDg1eUe8vPMx1+yJz8VFwx0yaUa5fqEYlxPehRQiVJ
i0+YMosRqKtcm1mLxoGcwSyo0CgYEAynhB/FM9DnARwg/PsE/AuXVpXlxPU5F+shpYX2sF3rItTD4EWFr/

125

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518#section-3.2

glo26LT/MLw2ckNkLT11yAWdR8hAzVZ48Ly3Ur8Fi88iInLPEixunBIsPcR3dI2UoI9dswnTM+H/Z83yQ1
6VWGjtE3437LWSXBHEw/am9W9pArEunt3TQz8CgYEAxvgS7BAokIqASi0zBpmyogRVHGs0eC3mMWLG+t5V
XJ5M1z1pV9dOuInnI29wJqBscefueOPcT6mNJngW/kHlcGGOxij+hRUnAdVltTod4CJ3Q/IyM6h/FzunEe
umZyZ1BW3G5KTcpegcBquUW6impyJbnUvKV4p9rpLTEBooKcMCgYEAhB1skUWPdbhTHhpLH3UrANlIZDY/
3Pv3fCgMulaPgf0p6bIeC7l1OI29fqN8UUS/Elg/KfYMwPRI6OoWvuZKDGxYAzp6V/xU/b2EuQsdMeH51G
Q6vmcUMKDcN1OV6SjzC70q9CLnuMTezfVycJcaZdGCX4y27ThBgWw0S53bmOkCgYAdCHfiYF068irUKBJJ
BUZuo8kzk2UdoDz1ud8lHipAkIzP35MukSlYfi7vGcS4rjIE0P4YP8+XBDungGCCi2UKaAHoYnT5QGPnvZ
bQwgE4Am96x62RoiWhYz/2uncWmCL9Ps6F8JSN1Pe59XF5int+6eGKa1PEQF4kiiIoOFjh9wKBgG6XXGl8
4fBaOaTsCPu+oQcAAp1GzweSy4l1Y1L71YvbxU1bs5338vgiH5OeUA4d5w0Ei9d/bSw0PWV4aACWWGGclL
hzv8ia6bEWqt0TskUiUJVzgTXWp3ojpsP/QE36Ty+uWWqckBXv6dnEXEgrLqzbA6qTAohSSFjV4FAjxBxa
:MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnV02gD0aCAL1o5uTLJDbXBmpJDBOBxIWfKENi
fFzVNvWU+0KuUz++vfzvDh+T2+epj1C7MGEqHMnKwAET84wCqca/mDe8Nv86OTLAUWbAEoKQsZwnmCwlrS
c5s2P2GJQB3bLt44/+MLgHGKM0dcROXtoBI9AUOl8+zRC4XHhGaW1yHikg6JS3Qiq1Wdb3Q9Kvx3Y2Nqng
QAqnhvMmF7I9jIgDCWOnX/NGQqqR5HA/ZoX86lKORHFgg+183DiUETVCpARDm3pqv/7beTRxW1pwXhnkyQ
XMl1e1Kqm453eocAQUtXerrAGoBkOEVgxzwTJNNgXRBcq2Y4CVzNQtYlP/QIDAQAB ②

① Valid values are RS256, RS384 and RS512

② Value is obtained by the commands above; the public key value is the string after the : sign,
e.g.

QB3bLt44/+MLgHGKM0dcROXtoBI9AUOl8+zRC4XHhGaW1yHikg6JS3Qiq1Wdb3Q9Kvx3Y2NqngQAqnhvMm
F7I9jIgDCWOnX/NGQqqR5HA/ZoX86lKORHFgg+183DiUETVCpARDm3pqv/7beTRxW1pwXhnkyQXMl1e1Kq
m453eocAQUtXerrAGoBkOEVgxzwTJNNgXRBcq2Y4CVzNQtYlP/QIDAQAB

Longer RSA keys offer stronger protection against cracking. The JWS specification
suggests at least 2048 bits. Please consider that higher CPU usage is involved with
longer keys.

5.9. Configuration Parameters
Most run-time configuration options are available as parameters and can be tuned via the admin
console:

• password.cipher.algorithm - which cipher algorithm shall be used for encrypting password
values; supported algorithms include SHA-1, SHA-256, SHA-512, AES, S-MD5, S-SHA-1, S-SHA-256, S-
SHA-512 and BCRYPT; salting options are available in the core.properties file;

The value of the security.secretKey property in the core.properties file is used
for AES-based encryption / decryption. Besides password values, this is also
used whenever reversible encryption is needed, throughout the whole system.
When the secretKey value has length less than 16, it is right-padded by random
characters during startup, to reach such mininum value.
It is strongly recommended to provide a value long at least 16 characters, in
order to avoid unexpected behaviors at runtime, expecially with high-
availability.

126

• jwt.lifetime.minutes - validity of JSON Web Token values used for authentication (in minutes);

• notificationjob.cronExpression - cron expression describing how frequently the pending
notification tasks are processed: empty means disabled;

 Restarting the deployment is required when changing value for this parameter.

• notification.maxRetries - how many times the delivery of a given notification should be
attempted before giving up;

 Restarting the deployment is required when changing value for this parameter.

• token.length - the length of the random tokens that can be generated as part of various
workflow processes, including password reset;

• token.expireTime - the time after which the generated random tokens expire;

• selfRegistration.allowed - whether self-registration (typically via the enduser application) is
allowed;

• passwordReset.allowed - whether the password reset feature (typically via the enduser
application) is allowed;

• passwordReset.securityQuestion - whether the password reset feature involves security
questions;

• authentication.attributes - the list of attributes whose values can be passed as login name for
authentication, defaults to username; please note that the related plain schemas must impose the
unique constraint, for this mechanism to work properly;

• authentication.statuses - the list of workflow statuses for which users are allowed to
authenticate;

 Suspended Users are anyway not allowed to authenticate.

• log.lastlogindate - whether the system updates the lastLoginDate field of users upon
authentication;

• return.password.value - whether the hashed password value and the hashed security answer (if
any) value shall be

• connector.test.timeout - timeout (in seconds) to check connector connection in Admin Console;
0 to skip any check;

This parameter is useful to avoid waiting for the default connector timeout, by
setting a shorter value; or to completely disable connector connection testing.

• resource.test.timeout - timeout (in seconds) to check resource connection in Admin Console; 0
to skip any check;

This parameter is useful to avoid waiting for the default resource timeout, by
setting a shorter value; or to completely disable resource connection testing.

127

https://en.wikipedia.org/wiki/JSON_Web_Token
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-cron-expression

Besides this default set, new configuration parameters can be defined to support custom code.

128

Chapter 6. HOWTO

6.1. Set admin credentials

The procedure below affects only the Master domain; for other domains check
above.

The credentials are defined in the core.properties file; text encoding must be set to UTF-8:

• security.adminUser - administrator username (default admin)

• security.adminPassword - administrator password (default password)'s hashed value

• security.adminPasswordAlgorithm - algorithm to be used for hash evaluation (default SSHA256,
also supported are SHA1, SHA256, SHA512, SMD5, SSHA1, SSHA512 and BCRYPT)

Example 43. Generate SHA1 password value on GNU / Linux

The sha1sum command-line tool of GNU Core Utilities can be used as follows:

echo -n "new_password" | sha1sum

Please beware that any shell special character must be properly escaped for the command
above to produce the expected hashed value.

Example 44. Generate SSHA256 password value on GNU / Linux

$ python3 pySSHA/ssha.py -p password -enc sha256 -s 666ac543 \
 | sed 's/{.*}//' | xargs echo -n | base64 -d | xxd -p | tr -d $'\n' | xargs echo

Several tools involved here:

• pySSHA-slapd

• xargs

• echo

• base64

• xxd

• tr

The command above will:

1. generate a SHA256 hash for input value password with suffixed salt 666ac543 (4 bytes in hex
format), via ssha.py

2. remove the {SSHA256} prefix from the generated value and newline, via sed and xargs

129

http://www.gnu.org/software/coreutils/
https://github.com/peppelinux/pySSHA-slapd
http://man7.org/linux/man-pages/man1/xargs.1.html
http://man7.org/linux/man-pages/man1/echo.1.html
http://man7.org/linux/man-pages/man1/base64.1.html
https://linux.die.net/man/1/xxd
http://man7.org/linux/man-pages/man1/tr.1.html

3. since the generated value is Base64-encoded while Syncope requires Hexadecimal format,
perform the required conversion via base64, xxd and tr

4. append newline to ease copy / paste, via xargs and echo

6.2. Internal storage export - import
Almost every configurable aspect of a given deployment is contained in the internal storage:
schemas, connectors, resources, mapping, roles, groups, tasks and other parameters.

During the implementation phase of an Apache Syncope-based project, it might be useful to move
such configuration back and forth from one Apache Syncope instance to another (say developer’s
laptop and production server).
One option is clearly to act at a low level by empowering DBMS' dump & restore capabilities, but
what if the developer is running MySQL (or even in-memory H2) while the sysadmin features
Oracle?

Wipe existing content

When not running in-memory H2, the internal storage’s data must be wiped
before starting Apache Syncope, otherwise the provided content will be just
ignored.

Check core-persistence.log for message

Empty database found, loading default content

If the internal storage is not empty, instead, you will get

Data found in the database, leaving untouched

All references in the following are set to MasterContent.xml; when other domains
are defined, the content file is renamed accordingly. For example, TwoContent.xml if
domain name is Two.

MySQL and lower case table names

On some platforms (namely, Mac OS X) MySQL is configured by default to be case
insensitive: in such cases, you might want to edit the /etc/my.cnf file and add the
following line in the [mysqld] section:

lower_case_table_names=1

130

6.2.1. Export

This task can be accomplished either via the admin console or by barely invoking the REST layer
through curl, for example:

curl -X GET -u admin:password -o MasterContent.xml \
 http://localhost:9080/syncope/rest/configurations/stream?tableThreshold=100

where tableThreshold indicates the maximum number of rows to take for each table of internal
storage.

6.2.2. Import

Basically, all you need to do is to replace the local MasterContent.xml with the one exported as
explained above; this file is located at:

• $TOMCAT_HOME/webapps/syncope/WEB-INF/classes/domains/MasterContent.xml for Standalone

• core/src/test/resources/domains/MasterContent.xml for Maven projects in embedded mode

• core/src/main/resources/domains/MasterContent.xml for Maven projects

6.3. Keystore
A Java Keystore is a container for authorization certificates or public key certificates, and is often
used by Java-based applications for encryption, authentication, and serving over HTTPS. Its entries
are protected by a keystore password. A keystore entry is identified by an alias, and it consists of
keys and certificates that form a trust chain.

A keystore is currently required by the SAML 2.0 Service Provider for UI extension in order to sign
and / or encrypt the generated SAML 2.0 requests.

While a sample keystore is provided, it is strongly recommended to setup a production keystore; in
the following, a reference procedure for this is reported.

The procedure below is not meant to cover all possible options and scenarios for
generating a keystore, nor to provide complete coverage of the keytool command.

Create new keystore

keytool -genkey \
 -keyalg RSA \
 -keysize 2048 \
 -alias saml2sp4ui \
 -dname "CN=SAML2SP,OU=Apache Syncope, O=The ASF, L=Wilmington, ST=Delaware, C=US" \
 -keypass akyepass \
 -storepass astorepass \
 -storetype JKS \

131

http://curl.haxx.se/
https://en.wikipedia.org/wiki/Keystore

 -keystore saml2sp4ui.jks

This command will create a keystore file with name saml2sp4ui.jks in the execution directory,
containing a new 2048-bit RSA key pair, under the specified alias (saml2sp4ui); password values for
keypass and storepass are also set.

Create new CSR

keytool -certreq \
 -alias saml2sp4ui \
 -keyalg RSA \
 -file certreq.pem \
 -keypass akyepass \
 -storepass astorepass \
 -storetype JKS \
 -keystore saml2sp4ui.jks

This command will create a CSR file with name certreq.pem in the execution directory, within the
keystore generated above.
The generated CSR file can be sent to a Certificate Authority (CA) to request the issuance of a CA-
signed certificate.

Have the CSR signed by a Certificate Authority (CA)

This step cannot be automated, and is definitely out of the scope of the this document.

Before proceeding, it is fundamental to have ready the root / intermediate CA certificate(s) and the
signed certificate.

Import the certificates into the keystore

keytool -import \
 -alias root \
 -file cacert.pem \
 -keypass akyepass \
 -storepass astorepass \
 -storetype JKS \
 -keystore saml2sp4ui.jks

This command will import the root / intermediate CA certificate(s) from the cacert.pem file into the
keystore generated above.

keytool -import \
 -alias saml2sp4ui \
 -file cert.pem \
 -keypass akyepass \
 -storepass astorepass \

132

 -storetype JKS \
 -keystore saml2sp4ui.jks

This command will import the signed certificate from the cert.pem file into the keystore generated
above.

Finalize

The keystore file saml2sp4ui.jks can now be placed in the configuration directory; the relevant part
of the core.properties file should be:

saml2.sp4ui.keystore=file://${syncope.conf.dir}/saml2sp4ui.jks
saml2.sp4ui.keystore.type=jks
saml2.sp4ui.keystore.storepass=astorepass
saml2.sp4ui.keystore.keypass=akyepass

6.4. Upgrade from 2.1
The distance between earlier releases and Syncope 3.0 Maggiore is relevant under different aspects:
architecture, technology, project organization and naturally internal data representation.

For this reason there is no practical way to migrate an old project to Syncope 3.0.

It is possible, however, to setup a new Syncope 3.0 project, replicate configurations and finally
migrate the existing data. Here is the outlined approach:

1. create a new Maven project based on Syncope 3.0

2. update code customization and extensions made from your previous Syncope project to the new
classes and interfaces provided by Syncope 3.0

3. with both projects up and running:

a. download relevant configurations - especially connectors and resources - via REST from
your previous Syncope project

b. upload via REST to the new Syncope 3.0 project

c. configure a new REST resource in the new Syncope 3.0 project to pull users, groups and any
objects from your previous Syncope project

133

	Apache Syncope - Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Identity Technologies
	1.1.1. Identity Stores
	1.1.2. Identity Managers
	1.1.3. Access Managers
	1.1.4. The Complete Picture

	Chapter 2. Architecture
	2.1. Keymaster
	2.2. Core
	2.2.1. REST
	2.2.2. Logic
	2.2.3. Provisioning
	2.2.4. Workflow
	2.2.5. Persistence
	2.2.6. Security

	2.3. Web Access
	2.4. Secure Remote Access
	2.5. Admin UI
	2.6. End-user UI
	2.7. Third Party Applications

	Chapter 3. Concepts
	3.1. Users, Groups and Any Objects
	3.2. Type Management
	3.2.1. Schema
	Plain
	Derived
	Virtual

	3.2.2. AnyTypeClass
	3.2.3. AnyType
	3.2.4. RelationshipType
	3.2.5. Type Extensions

	3.3. External Resources
	3.3.1. Connector Bundles
	3.3.2. Connector Instance details
	3.3.3. External Resource details
	3.3.4. Mapping
	3.3.5. Linked Accounts

	3.4. Realms
	3.4.1. Realm Provisioning
	3.4.2. LogicActions

	3.5. Entitlements
	3.6. Privileges
	3.7. Roles
	3.7.1. Delegated Administration
	Group Ownership

	3.7.2. Delegation

	3.8. Provisioning
	3.8.1. Overview
	3.8.2. Propagation
	PropagationActions

	3.8.3. Pull
	PullActions
	Remediation

	3.8.4. Push
	PushActions

	3.8.5. Password Reset

	3.9. Policies
	3.9.1. Account
	Account Rules
	Pass-through Authentication

	3.9.2. Password
	Password Rules

	3.9.3. Access
	3.9.4. Attribute Release
	3.9.5. Authentication
	3.9.6. Propagation
	3.9.7. Pull
	Pull Correlation Rules

	3.9.8. Push
	Push Correlation Rules

	3.9.9. Ticket Expiration

	3.10. Workflow
	3.10.1. Flowable User Workflow Adapter
	Approval
	Request Management

	3.11. Notifications
	3.11.1. Notification Events
	3.11.2. Notification Templates

	3.12. Commands
	3.13. Tasks
	3.13.1. Propagation
	3.13.2. Pull
	3.13.3. Push
	3.13.4. Notification
	3.13.5. Macros
	3.13.6. Scheduled

	3.14. Reports
	3.15. Audit
	3.15.1. Audit Events
	3.15.2. Audit Event Processors

	3.16. Routes
	3.16.1. Predicates
	3.16.2. Filters

	3.17. Authentication Modules
	3.18. Attribute Repositories
	3.19. Client Applications
	3.20. Domains
	3.21. Implementations
	3.22. Extensions
	3.22.1. SAML 2.0 Service Provider for UI
	3.22.2. OpenID Connect Client for UI
	3.22.3. Elasticsearch
	3.22.4. OpenSearch
	3.22.5. SCIM

	Chapter 4. Usage
	4.1. Admin Console
	4.1.1. Accessibility
	4.1.2. Pages

	4.2. Enduser Application
	4.2.1. Accessibility
	4.2.2. Pages

	4.3. Core
	4.3.1. REST Authentication and Authorization
	JWTSSOProvider

	4.3.2. REST Headers
	X-Syncope-Token
	X-Syncope-Domain
	X-Syncope-Key and Location
	X-Application-Error-Code and X-Application-Error-Info
	X-Syncope-Delegated-By
	X-Syncope-Null-Priority-Async
	Prefer and Preference-Applied
	ETag, If-Match and If-None-Match
	X-Syncope-Entitlements
	X-Syncope-Delegations
	X-Syncope-Privileges

	4.3.3. Batch
	Batch requests
	Batch responses
	Asynchronous Batch Processing

	4.3.4. Search
	Sorting Search Results

	4.4. Client Library
	4.5. Customization
	4.5.1. General considerations
	Override behavior
	Extending configuration
	Deployment directories

	4.5.2. Core
	4.5.3. Console
	4.5.4. Enduser
	Form customization

	4.5.5. WA
	4.5.6. SRA
	4.5.7. Extensions

	4.6. Actuator Endpoints
	4.6.1. Core
	4.6.2. WA
	4.6.3. SRA

	Chapter 5. Configuration
	5.1. Deployment
	5.1.1. Standalone
	5.1.2. JavaEE Container
	5.1.3. Apache Tomcat 10
	5.1.4. Payara Server 6
	5.1.5. Wildfly 32

	5.2. DBMS
	5.2.1. PostgreSQL
	5.2.2. PostgreSQL (JSONB)
	5.2.3. MySQL
	5.2.4. MySQL (JSON)
	5.2.5. MariaDB
	5.2.6. Oracle Database
	5.2.7. Oracle Database (JSON)
	5.2.8. MS SQL Server

	5.3. High-Availability
	5.4. Domains Management
	5.5. ConnId locations
	5.6. Install connector bundles
	5.6.1. Local sources
	Different version of predefined connector bundle
	Non-predefined connector bundle

	5.6.2. Run-time

	5.7. E-mail Configuration
	5.8. Control JWT signature
	5.8.1. Hash-based Message Authentication Code
	5.8.2. RSA Public-Key Cryptography

	5.9. Configuration Parameters

	Chapter 6. HOWTO
	6.1. Set admin credentials
	6.2. Internal storage export - import
	6.2.1. Export
	6.2.2. Import

	6.3. Keystore
	6.4. Upgrade from 2.1

